Limits...
Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

Chu T, Guo N, Backén S, Akos D - Sensors (Basel) (2012)

Bottom Line: As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time.Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment.The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

View Article: PubMed Central - PubMed

Affiliation: School of Earth and Space Sciences, Peking University, Haidian District, Beijing, China. tianxing.chu@colorado.edu

ABSTRACT
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

No MeSH data available.


Related in: MedlinePlus

Horizontal positioning error comparison by using different image frame rate.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376587&req=5

f12-sensors-12-03162: Horizontal positioning error comparison by using different image frame rate.

Mentions: In an effort to balance the tradeoff between practical performance and computational cost, we deliberately reduce the image frame rate and examine the position solution of our integrated scheme by comparing with the truth reference. Figure 12 demonstrates a comparison of the horizontal positioning errors with different image frame rates based on the same GNSS observability as discussed previously.


Monocular camera/IMU/GNSS integration for ground vehicle navigation in challenging GNSS environments.

Chu T, Guo N, Backén S, Akos D - Sensors (Basel) (2012)

Horizontal positioning error comparison by using different image frame rate.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376587&req=5

f12-sensors-12-03162: Horizontal positioning error comparison by using different image frame rate.
Mentions: In an effort to balance the tradeoff between practical performance and computational cost, we deliberately reduce the image frame rate and examine the position solution of our integrated scheme by comparing with the truth reference. Figure 12 demonstrates a comparison of the horizontal positioning errors with different image frame rates based on the same GNSS observability as discussed previously.

Bottom Line: As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time.Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment.The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

View Article: PubMed Central - PubMed

Affiliation: School of Earth and Space Sciences, Peking University, Haidian District, Beijing, China. tianxing.chu@colorado.edu

ABSTRACT
Low-cost MEMS-based IMUs, video cameras and portable GNSS devices are commercially available for automotive applications and some manufacturers have already integrated such facilities into their vehicle systems. GNSS provides positioning, navigation and timing solutions to users worldwide. However, signal attenuation, reflections or blockages may give rise to positioning difficulties. As opposed to GNSS, a generic IMU, which is independent of electromagnetic wave reception, can calculate a high-bandwidth navigation solution, however the output from a self-contained IMU accumulates errors over time. In addition, video cameras also possess great potential as alternate sensors in the navigation community, particularly in challenging GNSS environments and are becoming more common as options in vehicles. Aiming at taking advantage of these existing onboard technologies for ground vehicle navigation in challenging environments, this paper develops an integrated camera/IMU/GNSS system based on the extended Kalman filter (EKF). Our proposed integration architecture is examined using a live dataset collected in an operational traffic environment. The experimental results demonstrate that the proposed integrated system provides accurate estimations and potentially outperforms the tightly coupled GNSS/IMU integration in challenging environments with sparse GNSS observations.

No MeSH data available.


Related in: MedlinePlus