Limits...
Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis.

Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Abd Majid WH, Abdul Rahman S - Sensors (Basel) (2012)

Bottom Line: The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field.This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction.The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

View Article: PubMed Central - PubMed

Affiliation: Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia. mahmoudy_phy@yahoo.com

ABSTRACT
This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

Show MeSH

Related in: MedlinePlus

The magnitude of current in constant voltages of in several magnetic fields.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376582&req=5

f4-sensors-12-03578: The magnitude of current in constant voltages of in several magnetic fields.

Mentions: In other words, the effect of magnetic field (with strengths less than 1,000.00 mT) is not noticed at voltages lower than potential barrier and is realized as reduction of current for voltages higher than this value. For voltages less than potential barrier, the external field favors collisions of charge-carriers but the barrier confines them and therefore concentrated charges vary and deformation in the edge of energy band occurs. For voltages higher than potential barrier current was observed to drop with increase in exerted magnetic field as shown in Figure 4 for each constant voltage of 1, 2, 3, 4 and 5.0 V. With increasing magnitude of the magnetic field, the arrival time for carrier from the left to the right electrode will decrease and the current transfer rate will decrease.


Electrical characterization of gold-DNA-gold structures in presence of an external magnetic field by means of I-V curve analysis.

Khatir NM, Banihashemian SM, Periasamy V, Ritikos R, Abd Majid WH, Abdul Rahman S - Sensors (Basel) (2012)

The magnitude of current in constant voltages of in several magnetic fields.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376582&req=5

f4-sensors-12-03578: The magnitude of current in constant voltages of in several magnetic fields.
Mentions: In other words, the effect of magnetic field (with strengths less than 1,000.00 mT) is not noticed at voltages lower than potential barrier and is realized as reduction of current for voltages higher than this value. For voltages less than potential barrier, the external field favors collisions of charge-carriers but the barrier confines them and therefore concentrated charges vary and deformation in the edge of energy band occurs. For voltages higher than potential barrier current was observed to drop with increase in exerted magnetic field as shown in Figure 4 for each constant voltage of 1, 2, 3, 4 and 5.0 V. With increasing magnitude of the magnetic field, the arrival time for carrier from the left to the right electrode will decrease and the current transfer rate will decrease.

Bottom Line: The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field.This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction.The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

View Article: PubMed Central - PubMed

Affiliation: Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Kuala Lumpur, Malaysia. mahmoudy_phy@yahoo.com

ABSTRACT
This work presents an experimental study of gold-DNA-gold structures in the presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal (MDM) structure. Its electric behavior when subjected to a magnetic field was studied through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that DNA as a semiconductor exhibits diode behavior in the MDM structure. The current versus magnetic field strength followed a decreasing trend because of a diminished mobility in the presence of a low magnetic field. This made clear that an externally imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT and for higher magnetic field strengths we can observe an increase in potential barrier in MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as potential magnetic sensors.

Show MeSH
Related in: MedlinePlus