Limits...
Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

Valverde J, Otero A, Lopez M, Portilla J, de la Torre E, Riesgo T - Sensors (Basel) (2012)

Bottom Line: At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall.This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved.Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

View Article: PubMed Central - PubMed

Affiliation: Centro de Electronica Industrial, Universidad Politecnica de Madrid, Madrid 28006, Spain. juan.valverde@upm.es

ABSTRACT
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

No MeSH data available.


Resource utilization of the FPGA.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376580&req=5

f5-sensors-12-02667: Resource utilization of the FPGA.

Mentions: This area has been split up in several fixed regions called reconfigurable slots. As can be seen in Figure 5, some of these slots are connected using a streaming structure, while the others follow a bus-based approach. In both cases, those reconfigurable modules are connected with the static side using a bus-based approach. In order to dimension the reconfigurable slots, some blocks typically used in secure WSN applications have been tested. In Table 1, two encryption algorithms and their space utilization are shown. Those values are given by the Xilinx ISE tool once the blocks are located inside the FPGA. According to the defined size, every slot may contain up to 960 slices, 12 Block RAM modules and 8 DSP48E processing blocks.


Using SRAM based FPGAs for power-aware high performance wireless sensor networks.

Valverde J, Otero A, Lopez M, Portilla J, de la Torre E, Riesgo T - Sensors (Basel) (2012)

Resource utilization of the FPGA.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376580&req=5

f5-sensors-12-02667: Resource utilization of the FPGA.
Mentions: This area has been split up in several fixed regions called reconfigurable slots. As can be seen in Figure 5, some of these slots are connected using a streaming structure, while the others follow a bus-based approach. In both cases, those reconfigurable modules are connected with the static side using a bus-based approach. In order to dimension the reconfigurable slots, some blocks typically used in secure WSN applications have been tested. In Table 1, two encryption algorithms and their space utilization are shown. Those values are given by the Xilinx ISE tool once the blocks are located inside the FPGA. According to the defined size, every slot may contain up to 960 slices, 12 Block RAM modules and 8 DSP48E processing blocks.

Bottom Line: At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall.This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved.Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

View Article: PubMed Central - PubMed

Affiliation: Centro de Electronica Industrial, Universidad Politecnica de Madrid, Madrid 28006, Spain. juan.valverde@upm.es

ABSTRACT
While for years traditional wireless sensor nodes have been based on ultra-low power microcontrollers with sufficient but limited computing power, the complexity and number of tasks of today's applications are constantly increasing. Increasing the node duty cycle is not feasible in all cases, so in many cases more computing power is required. This extra computing power may be achieved by either more powerful microcontrollers, though more power consumption or, in general, any solution capable of accelerating task execution. At this point, the use of hardware based, and in particular FPGA solutions, might appear as a candidate technology, since though power use is higher compared with lower power devices, execution time is reduced, so energy could be reduced overall. In order to demonstrate this, an innovative WSN node architecture is proposed. This architecture is based on a high performance high capacity state-of-the-art FPGA, which combines the advantages of the intrinsic acceleration provided by the parallelism of hardware devices, the use of partial reconfiguration capabilities, as well as a careful power-aware management system, to show that energy savings for certain higher-end applications can be achieved. Finally, comprehensive tests have been done to validate the platform in terms of performance and power consumption, to proof that better energy efficiency compared to processor based solutions can be achieved, for instance, when encryption is imposed by the application requirements.

No MeSH data available.