Limits...
Development of soil compaction analysis software (SCAN) integrating a low cost GPS receiver and compactometer.

Hwang J, Yun H, Kim J, Suh Y, Hong S, Lee D - Sensors (Basel) (2012)

Bottom Line: The SCAN is distinguished from other previous software for intelligent compaction (IC) in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers.For this, several methods were developed: (1) improving the accuracy of low cost GPS receiver's positioning results; (2) modeling the trajectory of a moving roller using a GPS receiver's results and linking it with the data from the compactometer; and (3) extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods.The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

View Article: PubMed Central - PubMed

Affiliation: Department of Civil, Architectural & Environmental Engineering, Sungkyunkwan University, Suwon 440-746, Korea. gpsboy@skku.edu

ABSTRACT
A software for soil compaction analysis (SCAN) has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC) in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1) improving the accuracy of low cost GPS receiver's positioning results; (2) modeling the trajectory of a moving roller using a GPS receiver's results and linking it with the data from the compactometer; and (3) extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

No MeSH data available.


Compaction roller with sensors and instruments for IC.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376573&req=5

f2-sensors-12-02351: Compaction roller with sensors and instruments for IC.

Mentions: Many sensors are mounted on a roller to gather data in real time for the purpose of location-based soil compaction analysis. Figure 2 shows the sensors and other equipment mounted on the roller. The main sensor is GPS for positioning and the compactometer for gathering soil compaction data.


Development of soil compaction analysis software (SCAN) integrating a low cost GPS receiver and compactometer.

Hwang J, Yun H, Kim J, Suh Y, Hong S, Lee D - Sensors (Basel) (2012)

Compaction roller with sensors and instruments for IC.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376573&req=5

f2-sensors-12-02351: Compaction roller with sensors and instruments for IC.
Mentions: Many sensors are mounted on a roller to gather data in real time for the purpose of location-based soil compaction analysis. Figure 2 shows the sensors and other equipment mounted on the roller. The main sensor is GPS for positioning and the compactometer for gathering soil compaction data.

Bottom Line: The SCAN is distinguished from other previous software for intelligent compaction (IC) in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers.For this, several methods were developed: (1) improving the accuracy of low cost GPS receiver's positioning results; (2) modeling the trajectory of a moving roller using a GPS receiver's results and linking it with the data from the compactometer; and (3) extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods.The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

View Article: PubMed Central - PubMed

Affiliation: Department of Civil, Architectural & Environmental Engineering, Sungkyunkwan University, Suwon 440-746, Korea. gpsboy@skku.edu

ABSTRACT
A software for soil compaction analysis (SCAN) has been developed for evaluating the compaction states using the data from the GPS as well as a compactometer attached on the roller. The SCAN is distinguished from other previous software for intelligent compaction (IC) in that it can use the results from various types of GPS positioning methods, and it also has an optimal structure for remotely managing the large amounts of data gathered from numerous rollers. For this, several methods were developed: (1) improving the accuracy of low cost GPS receiver's positioning results; (2) modeling the trajectory of a moving roller using a GPS receiver's results and linking it with the data from the compactometer; and (3) extracting the information regarding the compaction states of the ground from the modeled trajectory, using spatial analysis methods. The SCAN was verified throughout various field compaction tests, and it has been confirmed that it can be a very effective tool in evaluating field compaction states.

No MeSH data available.