Limits...
Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.

Wang JN, Tang JL - Sensors (Basel) (2012)

Bottom Line: We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers.The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer.Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Construction Engineering, National Yunlin University of Science and Technology, Douliou 64002, Taiwan. wangjn@yuntech.edu.tw

ABSTRACT
We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

Show MeSH

Related in: MedlinePlus

Schematic of the experimental setup using the PCF interferometers for (a) refractive index measurements; (b) temperature sensing measurements.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376571&req=5

f3-sensors-12-02983: Schematic of the experimental setup using the PCF interferometers for (a) refractive index measurements; (b) temperature sensing measurements.

Mentions: Figure 3 illustrates the experimental setup for refractive index and temperature sensing measurements with the PCF interferometer. The fiber-optic sensing system used to measure the transmission spectrum of the sensor consists of a broadband light source (λ = 1,550 nm), a sensing PCF interferometer, an OSA (ANDO AQ6315A), and a computer for data recording.


Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing.

Wang JN, Tang JL - Sensors (Basel) (2012)

Schematic of the experimental setup using the PCF interferometers for (a) refractive index measurements; (b) temperature sensing measurements.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376571&req=5

f3-sensors-12-02983: Schematic of the experimental setup using the PCF interferometers for (a) refractive index measurements; (b) temperature sensing measurements.
Mentions: Figure 3 illustrates the experimental setup for refractive index and temperature sensing measurements with the PCF interferometer. The fiber-optic sensing system used to measure the transmission spectrum of the sensor consists of a broadband light source (λ = 1,550 nm), a sensing PCF interferometer, an OSA (ANDO AQ6315A), and a computer for data recording.

Bottom Line: We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers.The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer.Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

View Article: PubMed Central - PubMed

Affiliation: Department of Construction Engineering, National Yunlin University of Science and Technology, Douliou 64002, Taiwan. wangjn@yuntech.edu.tw

ABSTRACT
We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.

Show MeSH
Related in: MedlinePlus