Limits...
Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors.

Her SC, Yang CM - Sensors (Basel) (2012)

Bottom Line: Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent.A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer.The experimental results are validated with the strain gauge.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Yuan Ze University, Chung-Li 320, Taiwan. mesch@saturn.yzu.edu.tw

ABSTRACT
Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge.

No MeSH data available.


Related in: MedlinePlus

Demodulated phase shift with excitation frequency of 7 Hz.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376560&req=5

f8-sensors-12-03314: Demodulated phase shift with excitation frequency of 7 Hz.

Mentions: Substituting the three output signals of the 3 × 3 coupler as shown in Figure 7 into the Matlab software, performs the phase shift demodulation as shown in Figure 3. The result of the demodulated phase shift is presented in Figure 8. Substituting the phase shift Δϕ(t) from Figure 8 into Equation (3), leads to the determination of the dynamic strain of the cantilever beam. The dynamic strains obtained by the optical fiber sensor are compared with the results of the strain gauge as shown in Figure 9. Good agreement is achieved between these two sensors.


Dynamic strain measured by Mach-Zehnder interferometric optical fiber sensors.

Her SC, Yang CM - Sensors (Basel) (2012)

Demodulated phase shift with excitation frequency of 7 Hz.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376560&req=5

f8-sensors-12-03314: Demodulated phase shift with excitation frequency of 7 Hz.
Mentions: Substituting the three output signals of the 3 × 3 coupler as shown in Figure 7 into the Matlab software, performs the phase shift demodulation as shown in Figure 3. The result of the demodulated phase shift is presented in Figure 8. Substituting the phase shift Δϕ(t) from Figure 8 into Equation (3), leads to the determination of the dynamic strain of the cantilever beam. The dynamic strains obtained by the optical fiber sensor are compared with the results of the strain gauge as shown in Figure 9. Good agreement is achieved between these two sensors.

Bottom Line: Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent.A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer.The experimental results are validated with the strain gauge.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Yuan Ze University, Chung-Li 320, Taiwan. mesch@saturn.yzu.edu.tw

ABSTRACT
Optical fibers possess many advantages such as small size, light weight and immunity to electro-magnetic interference that meet the sensing requirements to a large extent. In this investigation, a Mach-Zehnder interferometric optical fiber sensor is used to measure the dynamic strain of a vibrating cantilever beam. A 3 × 3 coupler is employed to demodulate the phase shift of the Mach-Zehnder interferometer. The dynamic strain of a cantilever beam subjected to base excitation is determined by the optical fiber sensor. The experimental results are validated with the strain gauge.

No MeSH data available.


Related in: MedlinePlus