Limits...
Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

Zhang Q, Xue C, Yuan Y, Lee J, Sun D, Xiong J - Sensors (Basel) (2012)

Bottom Line: Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents.Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared.Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, Shanxi, China. zhangq0902@163.com

ABSTRACT
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

Show MeSH

Related in: MedlinePlus

Transmitted power spectra of the silane coupling agent modified fiber tested in air and water.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376559&req=5

f8-sensors-12-02729: Transmitted power spectra of the silane coupling agent modified fiber tested in air and water.

Mentions: Figure 8 illustrates the transmitted power spectra of a single-mode tapered fiber tested in air and water, modified with APTMS as a function of wavelength. The obvious decline in water λ = 1,240 nm and λ = 1,380 nm are pronounced, and are shown as the curve (b). The absorption peaks of water are approximately 1,240 and 1,380 nm [20]. Comparing the curve (b) with the curve (a), approximately 14.6 dB and 10.1 dB fall at λ = 1,240 nm and λ = 1,380 nm. The obvious decline in water illustrates that the APTMS on the fiber surface can absorb the water molecules. Depending on the successful APTMS surface modification, the gold nanoparticles can be absorbed by the silane coupling agent on the fiber surface.


Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

Zhang Q, Xue C, Yuan Y, Lee J, Sun D, Xiong J - Sensors (Basel) (2012)

Transmitted power spectra of the silane coupling agent modified fiber tested in air and water.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376559&req=5

f8-sensors-12-02729: Transmitted power spectra of the silane coupling agent modified fiber tested in air and water.
Mentions: Figure 8 illustrates the transmitted power spectra of a single-mode tapered fiber tested in air and water, modified with APTMS as a function of wavelength. The obvious decline in water λ = 1,240 nm and λ = 1,380 nm are pronounced, and are shown as the curve (b). The absorption peaks of water are approximately 1,240 and 1,380 nm [20]. Comparing the curve (b) with the curve (a), approximately 14.6 dB and 10.1 dB fall at λ = 1,240 nm and λ = 1,380 nm. The obvious decline in water illustrates that the APTMS on the fiber surface can absorb the water molecules. Depending on the successful APTMS surface modification, the gold nanoparticles can be absorbed by the silane coupling agent on the fiber surface.

Bottom Line: Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents.Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared.Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, Shanxi, China. zhangq0902@163.com

ABSTRACT
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

Show MeSH
Related in: MedlinePlus