Limits...
Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

Zhang Q, Xue C, Yuan Y, Lee J, Sun D, Xiong J - Sensors (Basel) (2012)

Bottom Line: Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents.Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared.Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, Shanxi, China. zhangq0902@163.com

ABSTRACT
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

Show MeSH

Related in: MedlinePlus

Schematic of self-assembly of gold nanoparticles in APTMS.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376559&req=5

f3-sensors-12-02729: Schematic of self-assembly of gold nanoparticles in APTMS.

Mentions: Gold nanoparticles can be modified by APTMS under electrostatic force, which is a type of intermolecular force. Polar molecules have dipole matrices and the electrostatic; interactive forces among the dipole molecules comprise the electrostatic force. Figure 3 illustrates the principle of surface modification using gold nanoparticles and self-assembly on the tapered fibers in APTMS. A piranha solution can remove the retained plastic cladding and transform the groups to hydroxyl on the fiber surface. After the fiber is treated with APTMS, amino groups are formed on the fiber surface [17]. The gold nanoparticles have negative electric charge, whereas the amino groups have positive electric charge. The produced electrostatic force between them results in the self-assembly of the gold nanoparticles on the treated fiber surface [18].


Fiber surface modification technology for fiber-optic localized surface plasmon resonance biosensors.

Zhang Q, Xue C, Yuan Y, Lee J, Sun D, Xiong J - Sensors (Basel) (2012)

Schematic of self-assembly of gold nanoparticles in APTMS.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376559&req=5

f3-sensors-12-02729: Schematic of self-assembly of gold nanoparticles in APTMS.
Mentions: Gold nanoparticles can be modified by APTMS under electrostatic force, which is a type of intermolecular force. Polar molecules have dipole matrices and the electrostatic; interactive forces among the dipole molecules comprise the electrostatic force. Figure 3 illustrates the principle of surface modification using gold nanoparticles and self-assembly on the tapered fibers in APTMS. A piranha solution can remove the retained plastic cladding and transform the groups to hydroxyl on the fiber surface. After the fiber is treated with APTMS, amino groups are formed on the fiber surface [17]. The gold nanoparticles have negative electric charge, whereas the amino groups have positive electric charge. The produced electrostatic force between them results in the self-assembly of the gold nanoparticles on the treated fiber surface [18].

Bottom Line: Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents.Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared.Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

View Article: PubMed Central - PubMed

Affiliation: National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, Shanxi, China. zhangq0902@163.com

ABSTRACT
Considerable studies have been performed on the development of optical fiber sensors modified by gold nanoparticles based on the localized surface plasmon resonance (LSPR) technique. The current paper presents a new approach in fiber surface modification technology for biosensors. Star-shaped gold nanoparticles obtained through the seed-mediated solution growth method were found to self-assemble on the surface of tapered optical fibers via amino- and mercapto-silane coupling agents. Transmitted power spectra of 3-aminopropyltrimethoxy silane (APTMS)-modified fiber were obtained, which can verify that the silane coupling agent surface modification method is successful. Transmission spectra are characterized in different concentrations of ethanol and gentian violet solutions to validate the sensitivity of the modified fiber. Assembly using star-shaped gold nanoparticles and amino/mercapto silane coupling agent are analyzed and compared. The transmission spectra of the gold nanoparticles show that the nanoparticles are sensitive to the dielectric properties of the surrounding medium. After the fibers are treated in t-dodecylmercaptan to obtain their transmission spectra, APTMS-modified fiber becomes less sensitive to different media, except that modified by 3-mercaptopropyltrimethoxy silane (MPTMS). Experimental results of the transmission spectra show that the surface modified by the gold nanoparticles using MPTMS is firmer compared to that obtained using APTMS.

Show MeSH
Related in: MedlinePlus