Limits...
Vapochromic behaviour of M[Au(CN)2]2-based coordination polymers (M = Co, Ni).

Lefebvre J, Korčok JL, Katz MJ, Leznoff DB - Sensors (Basel) (2012)

Bottom Line: Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis.Absorption of pyridine vapour by solid Ni(μ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes.Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(μ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada. jlefebvr@ucalgary.ca

ABSTRACT
A series of M[Au(CN)(2)](2)(analyte)(x) coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH(2))[Au(CN)(2)](2) yielded visible vapochromic responses for M = Co but not M = Ni; the IR ν(CN) spectral region changed in every case. A single crystal structure of Zn[Au(CN)(2)](2)(DMSO)(2) revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)(2)] in DMSO yielded the isostructural Ni[Au(CN)(2)](2)(DMSO)(2) product. Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis. Co[Au(CN)(2)](2)(pyridine)(4) is generated via vapour absorption by Co(μ-OH(2))[Au(CN)(2)](2); the analogous Ni complex is synthesized by immersion of Ni(μ-OH(2))[Au(CN)(2)](2) in 4% aqueous pyridine. Similar immersion of Co(μ-OH(2))[Au(CN)(2)](2) yielded Co[Au(CN)(2)](2)(pyridine)(2), which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(μ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

No MeSH data available.


Related in: MedlinePlus

Extended 2-D structure of Zn[Au(CN)2]2(DMSO)2. (a) Local geometry of Zn, showing thermal ellipsoids; (b) A single 2-D sheet, viewed down the face of the sheet; (c) A pair of 2-D sheets, viewed perpendicular to the sheet face, long Au(1)-Au(2*) interactions 3.4943(6) Å represents the closest contact between sheets (DMSO molecules excluded for clarity).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376558&req=5

f2-sensors-12-03669: Extended 2-D structure of Zn[Au(CN)2]2(DMSO)2. (a) Local geometry of Zn, showing thermal ellipsoids; (b) A single 2-D sheet, viewed down the face of the sheet; (c) A pair of 2-D sheets, viewed perpendicular to the sheet face, long Au(1)-Au(2*) interactions 3.4943(6) Å represents the closest contact between sheets (DMSO molecules excluded for clarity).

Mentions: The Zn[Au(CN)2]2(DMSO)2 structure (Figure 2, Tables 2 and 3) contains a single octahedral Zn(II) centre, with two cis-coordinated oxygen-bound DMSO molecules (Figure 2(a), Zn-O = 2.120(6) and 2.075(6) Å). The remaining four sites around the Zn(II) are coordinated with [Au(CN)2]− units with an average Zn-N bond length of 2.144(8) Å, longer than the <2.0 Å Zn-N bond lengths in the tetrahedrally coordinated polymorphs of Zn[Au(CN)2]2 [37,38]. A 2-D corrugated structure, with DMSO molecules protruding from the apex of the corrugation, is formed by the bridging [Au(CN)2]− units (Figure 2(c)). The closest contact between sheets is a Au-Au interaction of 3.4943(6) Å. A similar crystal structure was observed for the Cu(II) system [35].


Vapochromic behaviour of M[Au(CN)2]2-based coordination polymers (M = Co, Ni).

Lefebvre J, Korčok JL, Katz MJ, Leznoff DB - Sensors (Basel) (2012)

Extended 2-D structure of Zn[Au(CN)2]2(DMSO)2. (a) Local geometry of Zn, showing thermal ellipsoids; (b) A single 2-D sheet, viewed down the face of the sheet; (c) A pair of 2-D sheets, viewed perpendicular to the sheet face, long Au(1)-Au(2*) interactions 3.4943(6) Å represents the closest contact between sheets (DMSO molecules excluded for clarity).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376558&req=5

f2-sensors-12-03669: Extended 2-D structure of Zn[Au(CN)2]2(DMSO)2. (a) Local geometry of Zn, showing thermal ellipsoids; (b) A single 2-D sheet, viewed down the face of the sheet; (c) A pair of 2-D sheets, viewed perpendicular to the sheet face, long Au(1)-Au(2*) interactions 3.4943(6) Å represents the closest contact between sheets (DMSO molecules excluded for clarity).
Mentions: The Zn[Au(CN)2]2(DMSO)2 structure (Figure 2, Tables 2 and 3) contains a single octahedral Zn(II) centre, with two cis-coordinated oxygen-bound DMSO molecules (Figure 2(a), Zn-O = 2.120(6) and 2.075(6) Å). The remaining four sites around the Zn(II) are coordinated with [Au(CN)2]− units with an average Zn-N bond length of 2.144(8) Å, longer than the <2.0 Å Zn-N bond lengths in the tetrahedrally coordinated polymorphs of Zn[Au(CN)2]2 [37,38]. A 2-D corrugated structure, with DMSO molecules protruding from the apex of the corrugation, is formed by the bridging [Au(CN)2]− units (Figure 2(c)). The closest contact between sheets is a Au-Au interaction of 3.4943(6) Å. A similar crystal structure was observed for the Cu(II) system [35].

Bottom Line: Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis.Absorption of pyridine vapour by solid Ni(μ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes.Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(μ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada. jlefebvr@ucalgary.ca

ABSTRACT
A series of M[Au(CN)(2)](2)(analyte)(x) coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH(2))[Au(CN)(2)](2) yielded visible vapochromic responses for M = Co but not M = Ni; the IR ν(CN) spectral region changed in every case. A single crystal structure of Zn[Au(CN)(2)](2)(DMSO)(2) revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)(2)] in DMSO yielded the isostructural Ni[Au(CN)(2)](2)(DMSO)(2) product. Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis. Co[Au(CN)(2)](2)(pyridine)(4) is generated via vapour absorption by Co(μ-OH(2))[Au(CN)(2)](2); the analogous Ni complex is synthesized by immersion of Ni(μ-OH(2))[Au(CN)(2)](2) in 4% aqueous pyridine. Similar immersion of Co(μ-OH(2))[Au(CN)(2)](2) yielded Co[Au(CN)(2)](2)(pyridine)(2), which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(μ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

No MeSH data available.


Related in: MedlinePlus