Limits...
New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria.

Wang Y, Ye Z, Ying Y - Sensors (Basel) (2012)

Bottom Line: The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security.The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element.In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review.

View Article: PubMed Central - PubMed

Affiliation: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. wang_yi_xian1986@sina.com

ABSTRACT
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review.

Show MeSH
Schematic view of impedimetric biosensors fabricated by different bio-recognition elements: (A) Antibody-based sensor; (B) Nucleic Acid-based sensor; (C) Bacteriophage-based sensor; (D) Lectin-based sensor.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376556&req=5

f2-sensors-12-03449: Schematic view of impedimetric biosensors fabricated by different bio-recognition elements: (A) Antibody-based sensor; (B) Nucleic Acid-based sensor; (C) Bacteriophage-based sensor; (D) Lectin-based sensor.

Mentions: Impedimetric biosensors have been designed by immobilizing bioreceptors (such as antibodies, nucleic acids, bacteriophages and lectins) at the surface of a solid electrode. The binding ability of bacteria and the bioreceptors is then verified through the detection of either a shift in impedance, or change in capacitance or admittance at the bulk of the electrode interface due to the insulating properties [21]. The bacterial cell membrane consists of a lipid bilayer, where the lipid molecules are oriented with their polar groups facing outwards into the aqueous environment, and their hydrophobic hydrocarbon chains pointing inwards to form the membrane interior. Pethig reported that natural cell membranes (thickness 5–10 nm) show a membrane capacitance of 0.5–1.3 μF/cm2 and a membrane resistance of 102–105 Ω·cm2. If bacterial cells attach on an electrode surface, they would effectively reduce the electrode area that the current reaches and hence increases the interface impedance. Here, according to the types of bioreceptors, the impedimetric biosensors were classified into four different categories, including antibody-based sensors, nucleic acid-based sensors, bacteriophage-based sensors and lectin-based sensors (Figure 2).


New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria.

Wang Y, Ye Z, Ying Y - Sensors (Basel) (2012)

Schematic view of impedimetric biosensors fabricated by different bio-recognition elements: (A) Antibody-based sensor; (B) Nucleic Acid-based sensor; (C) Bacteriophage-based sensor; (D) Lectin-based sensor.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376556&req=5

f2-sensors-12-03449: Schematic view of impedimetric biosensors fabricated by different bio-recognition elements: (A) Antibody-based sensor; (B) Nucleic Acid-based sensor; (C) Bacteriophage-based sensor; (D) Lectin-based sensor.
Mentions: Impedimetric biosensors have been designed by immobilizing bioreceptors (such as antibodies, nucleic acids, bacteriophages and lectins) at the surface of a solid electrode. The binding ability of bacteria and the bioreceptors is then verified through the detection of either a shift in impedance, or change in capacitance or admittance at the bulk of the electrode interface due to the insulating properties [21]. The bacterial cell membrane consists of a lipid bilayer, where the lipid molecules are oriented with their polar groups facing outwards into the aqueous environment, and their hydrophobic hydrocarbon chains pointing inwards to form the membrane interior. Pethig reported that natural cell membranes (thickness 5–10 nm) show a membrane capacitance of 0.5–1.3 μF/cm2 and a membrane resistance of 102–105 Ω·cm2. If bacterial cells attach on an electrode surface, they would effectively reduce the electrode area that the current reaches and hence increases the interface impedance. Here, according to the types of bioreceptors, the impedimetric biosensors were classified into four different categories, including antibody-based sensors, nucleic acid-based sensors, bacteriophage-based sensors and lectin-based sensors (Figure 2).

Bottom Line: The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security.The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element.In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review.

View Article: PubMed Central - PubMed

Affiliation: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. wang_yi_xian1986@sina.com

ABSTRACT
The development of a rapid, sensitive, specific method for the foodborne pathogenic bacteria detection is of great importance to ensure food safety and security. In recent years impedimetric biosensors which integrate biological recognition technology and impedance have gained widespread application in the field of bacteria detection. This paper presents an overview on the progress and application of impedimetric biosensors for detection of foodborne pathogenic bacteria, particularly the new trends in the past few years, including the new specific bio-recognition elements such as bacteriophage and lectin, the use of nanomaterials and microfluidics techniques. The applications of these new materials or techniques have provided unprecedented opportunities for the development of high-performance impedance bacteria biosensors. The significant developments of impedimetric biosensors for bacteria detection in the last five years have been reviewed according to the classification of with or without specific bio-recognition element. In addition, some microfluidics systems, which were used in the construction of impedimetric biosensors to improve analytical performance, are introduced in this review.

Show MeSH