Limits...
Photosensitive-polyimide based method for fabricating various neural electrode architectures.

Kato YX, Furukawa S, Samejima K, Hironaka N, Kashino M - Front Neuroeng (2012)

Bottom Line: After characterizing PSPI's properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes.In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time.These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design, and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida Tokyo, Japan.

ABSTRACT
An extensive photosensitive-polyimide (PSPI)-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI's properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes. The fabricated neural electrodes were an electrocorticogram (ECoG) electrode, a mesh intracortical electrode with a unique lattice-like mesh structure to fixate neural tissue, and a guide cannula electrode with recording microelectrodes placed on the curved surface of a guide cannula as a microdialysis probe. In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time. These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design, and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

No MeSH data available.


Cured film thickness and spin-speed curves for Fujifilm Durimide 7510.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376501&req=5

Figure 3: Cured film thickness and spin-speed curves for Fujifilm Durimide 7510.

Mentions: We examined the effect of the shrinkage of PSPI thicknesses. As shown in Figure 3, the mean shrinkage of the thickness from soft-baked to post-baked PSPI was 23.46% ± 2.12 (mean ± SD) from 1000 to 5000 rpm. The large thickness showed slightly smaller shrinkage vertically than the small one. This result shows that the shrinkage effect was smaller for our chosen PSPI (Fujifilm Durimide 7510) than for the previously reported Probimide 7520 PSPI (Arch Chemicals, Columbus, OH, USA), which shrank vertically by about 40–50% during the curing process (Rousche et al., 2001). The fact that the PSPI used in this study shrinks in a similar manner horizontally and vertically during the curing process is evidence that it offers better performance in terms of design and processing than the previously reported PSPI.


Photosensitive-polyimide based method for fabricating various neural electrode architectures.

Kato YX, Furukawa S, Samejima K, Hironaka N, Kashino M - Front Neuroeng (2012)

Cured film thickness and spin-speed curves for Fujifilm Durimide 7510.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376501&req=5

Figure 3: Cured film thickness and spin-speed curves for Fujifilm Durimide 7510.
Mentions: We examined the effect of the shrinkage of PSPI thicknesses. As shown in Figure 3, the mean shrinkage of the thickness from soft-baked to post-baked PSPI was 23.46% ± 2.12 (mean ± SD) from 1000 to 5000 rpm. The large thickness showed slightly smaller shrinkage vertically than the small one. This result shows that the shrinkage effect was smaller for our chosen PSPI (Fujifilm Durimide 7510) than for the previously reported Probimide 7520 PSPI (Arch Chemicals, Columbus, OH, USA), which shrank vertically by about 40–50% during the curing process (Rousche et al., 2001). The fact that the PSPI used in this study shrinks in a similar manner horizontally and vertically during the curing process is evidence that it offers better performance in terms of design and processing than the previously reported PSPI.

Bottom Line: After characterizing PSPI's properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes.In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time.These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design, and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

View Article: PubMed Central - PubMed

Affiliation: Brain Science Institute, Tamagawa University, Machida Tokyo, Japan.

ABSTRACT
An extensive photosensitive-polyimide (PSPI)-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI's properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes. The fabricated neural electrodes were an electrocorticogram (ECoG) electrode, a mesh intracortical electrode with a unique lattice-like mesh structure to fixate neural tissue, and a guide cannula electrode with recording microelectrodes placed on the curved surface of a guide cannula as a microdialysis probe. In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time. These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design, and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

No MeSH data available.