Limits...
The blue-collar brain.

Van Orden G, Hollis G, Wallot S - Front Physiol (2012)

Bottom Line: Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain.This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body.The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

View Article: PubMed Central - PubMed

Affiliation: CAP Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati Cincinnati, OH, USA.

ABSTRACT
Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body. The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

No MeSH data available.


The ordered series of a single EEG-electrode record, sampled at 500 Hz (top) and the illustration of a spectral analysis of this record (bottom, right). Specific frequencies and magnitudes of change (bottom, left) are used to approximate the rough graph of the EEG data (top), and the outcome is the spectral portrait (lower right) on log–log axes. The spectral slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine waves have been adjusted to make smaller amplitude sine waves visible.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376425&req=5

Figure 1: The ordered series of a single EEG-electrode record, sampled at 500 Hz (top) and the illustration of a spectral analysis of this record (bottom, right). Specific frequencies and magnitudes of change (bottom, left) are used to approximate the rough graph of the EEG data (top), and the outcome is the spectral portrait (lower right) on log–log axes. The spectral slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine waves have been adjusted to make smaller amplitude sine waves visible.

Mentions: Event times of both human physiology and human behavior compose temporal scaling relations. In the scaling relations of event times, the magnitude of changes in the duration of event times is inversely proportional to how often a change of that magnitude recurs. Figure 1 portrays a physiological data series of brain activity to illustrate a scaling relation of fractal time. Across the top of Figure 1 we present raw electroencephalogram (EEG) data from a volunteer, collected from an electrode on his scalp while he performed the task of repeatedly estimating a 1 s time interval.


The blue-collar brain.

Van Orden G, Hollis G, Wallot S - Front Physiol (2012)

The ordered series of a single EEG-electrode record, sampled at 500 Hz (top) and the illustration of a spectral analysis of this record (bottom, right). Specific frequencies and magnitudes of change (bottom, left) are used to approximate the rough graph of the EEG data (top), and the outcome is the spectral portrait (lower right) on log–log axes. The spectral slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine waves have been adjusted to make smaller amplitude sine waves visible.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376425&req=5

Figure 1: The ordered series of a single EEG-electrode record, sampled at 500 Hz (top) and the illustration of a spectral analysis of this record (bottom, right). Specific frequencies and magnitudes of change (bottom, left) are used to approximate the rough graph of the EEG data (top), and the outcome is the spectral portrait (lower right) on log–log axes. The spectral slope −α = −1.08 is close to idealized 1/f noise (−α = −1.00). The Y-axes in the illustrated sine waves have been adjusted to make smaller amplitude sine waves visible.
Mentions: Event times of both human physiology and human behavior compose temporal scaling relations. In the scaling relations of event times, the magnitude of changes in the duration of event times is inversely proportional to how often a change of that magnitude recurs. Figure 1 portrays a physiological data series of brain activity to illustrate a scaling relation of fractal time. Across the top of Figure 1 we present raw electroencephalogram (EEG) data from a volunteer, collected from an electrode on his scalp while he performed the task of repeatedly estimating a 1 s time interval.

Bottom Line: Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain.This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body.The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

View Article: PubMed Central - PubMed

Affiliation: CAP Center for Cognition, Action and Perception, Department of Psychology, University of Cincinnati Cincinnati, OH, USA.

ABSTRACT
Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body. The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior.

No MeSH data available.