Limits...
Amino acid fermentation at the origin of the genetic code.

de Vladar HP - Biol. Direct (2012)

Bottom Line: This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation.In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons.These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors.

View Article: PubMed Central - HTML - PubMed

Affiliation: hpvladar@ist.ac.at

ABSTRACT
There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors.

Show MeSH
Yield of amino acids in the Miller experiment. Yield is measured in μmol; products result from sparkling 336 mmol of methane, which correspond to a total of 1.55%. Data from Table 1 of [13]. The grey and white bars represent amino acids that are electron donors and acceptors in the Stickland reaction, respectively. The yield axis is in a logarithmic scale.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3376031&req=5

Figure 4: Yield of amino acids in the Miller experiment. Yield is measured in μmol; products result from sparkling 336 mmol of methane, which correspond to a total of 1.55%. Data from Table 1 of [13]. The grey and white bars represent amino acids that are electron donors and acceptors in the Stickland reaction, respectively. The yield axis is in a logarithmic scale.

Mentions: In all three scenarios several "Stickland pairs" are readily formed. In particular, the "Miller amino acids" [10] with the highest yield (principally alanine, glycine, aspartic acid and valine; Figure 4) can form four Stickland pairs: alanine+glycine, alanine+aspartic acid, valine+glycine and valine+aspartic acid. Similarly, in the iron-sulfur world, glycine, serine and aspartic acid are readily synthesised [16], where we find that glycine+serine and glycine+aspartic acid are Stickland-reactive pairs. Finally, besides glycine and alanine, aspartic and glutamic acids are also formed in the alkaline hydrothermal vents [15], again forming the pairs alanine+glycine and alanine+aspartic acid and aspartic acid+alanine.


Amino acid fermentation at the origin of the genetic code.

de Vladar HP - Biol. Direct (2012)

Yield of amino acids in the Miller experiment. Yield is measured in μmol; products result from sparkling 336 mmol of methane, which correspond to a total of 1.55%. Data from Table 1 of [13]. The grey and white bars represent amino acids that are electron donors and acceptors in the Stickland reaction, respectively. The yield axis is in a logarithmic scale.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3376031&req=5

Figure 4: Yield of amino acids in the Miller experiment. Yield is measured in μmol; products result from sparkling 336 mmol of methane, which correspond to a total of 1.55%. Data from Table 1 of [13]. The grey and white bars represent amino acids that are electron donors and acceptors in the Stickland reaction, respectively. The yield axis is in a logarithmic scale.
Mentions: In all three scenarios several "Stickland pairs" are readily formed. In particular, the "Miller amino acids" [10] with the highest yield (principally alanine, glycine, aspartic acid and valine; Figure 4) can form four Stickland pairs: alanine+glycine, alanine+aspartic acid, valine+glycine and valine+aspartic acid. Similarly, in the iron-sulfur world, glycine, serine and aspartic acid are readily synthesised [16], where we find that glycine+serine and glycine+aspartic acid are Stickland-reactive pairs. Finally, besides glycine and alanine, aspartic and glutamic acids are also formed in the alkaline hydrothermal vents [15], again forming the pairs alanine+glycine and alanine+aspartic acid and aspartic acid+alanine.

Bottom Line: This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation.In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons.These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors.

View Article: PubMed Central - HTML - PubMed

Affiliation: hpvladar@ist.ac.at

ABSTRACT
There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors.

Show MeSH