Limits...
Pandemic influenza and hospital resources.

Nap RE, Andriessen MP, Meessen NE, van der Werf TS - Emerging Infect. Dis. (2007)

Bottom Line: We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area.We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support.Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.

View Article: PubMed Central - PubMed

Affiliation: University Medical Center Groningen, Groningen, the Netherlands. r.e.nap@rvb.umcg.nl

ABSTRACT
Using estimates from the Centers for Disease Control and Prevention, the World Health Organization, and published models of the expected evolution of pandemic influenza, we modeled the surge capacity of healthcare facility and intensive care unit (ICU) requirements over time in northern Netherlands (approximately 1.7 million population). We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area. We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support. Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.

Show MeSH

Related in: MedlinePlus

A) 30% attack rate and mean length of stay of 8 days without antiviral medication, pandemic period 9 weeks; B) 30% attack rate and mean length of stay of 8 days with antiviral medication, pandemic period 14 weeks; C) 30% attack rate and mean length of stay of 15 days without antiviral medication, pandemic period 9 weeks; D) 30% attack rate and mean length of stay of 15 days with antiviral medication, pandemic period 14 weeks.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3375786&req=5

Figure 1: A) 30% attack rate and mean length of stay of 8 days without antiviral medication, pandemic period 9 weeks; B) 30% attack rate and mean length of stay of 8 days with antiviral medication, pandemic period 14 weeks; C) 30% attack rate and mean length of stay of 15 days without antiviral medication, pandemic period 9 weeks; D) 30% attack rate and mean length of stay of 15 days with antiviral medication, pandemic period 14 weeks.

Mentions: We present the impact of a pandemic with new human-transmissible influenza on hospital resources in the northern part of the Netherlands. Using the figures of the RIVM, and assuming a 30% cumulative disease attack rate, we estimated that ≈12% of the population will consult a general practitioner (Table 2). The percentage of persons triaged for hospital admission is 0.3%. We assumed excess deaths among these selected patients, some 50% of whom may require mechanical ventilation (Figure 1). In the northern part of the Netherlands 5,629 regular hospital beds are available. The hospitals in this region have a total of 30% (non–influenza-related) acute care, which would leave 3,940 regular hospital beds that could be made available for influenza-related hospital admissions. If the attack rate reaches a maximum of 50% with a mean length of stay of 15 hospital days per patient, without any intervention, this would lead to a peak of 1,227 occupied regular hospital beds, which would suffice for influenza-related acute care. Therefore, we centered our calculations around the peak occupancy of intensive care beds. We calculated the number of hospital admissions per week, spread evenly across 7 days in the respective week, and we subtracted the number of deaths, also evenly spread across the week. We assumed that 25%–50% of total hospital admission patients would require some form of mechanical ventilator support, and we provide calculations for the extremes of our estimates. On the basis of results from a semistructured telephone interview with ICU medical staff of the hospitals in the 3 northern provinces, a maximum of 136 (of a total of 200) ICU beds could be dedicated to influenza-related acute-care patients. We estimate that 90 ICU beds will be made available in a short period. In the scenario of no additional intervention, if the full capacity of all 136 ICU beds is used, with an attack rate of 30%, 25% ICU admissions, and a mean length of stay of 8 days, we would have a shortage of 3 ICU beds at day 28 after onset, when we expect the pandemic to peak. This shortage in ICU capacity is exacerbated with any increase in hospital length of stay or ICU length of stay.


Pandemic influenza and hospital resources.

Nap RE, Andriessen MP, Meessen NE, van der Werf TS - Emerging Infect. Dis. (2007)

A) 30% attack rate and mean length of stay of 8 days without antiviral medication, pandemic period 9 weeks; B) 30% attack rate and mean length of stay of 8 days with antiviral medication, pandemic period 14 weeks; C) 30% attack rate and mean length of stay of 15 days without antiviral medication, pandemic period 9 weeks; D) 30% attack rate and mean length of stay of 15 days with antiviral medication, pandemic period 14 weeks.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3375786&req=5

Figure 1: A) 30% attack rate and mean length of stay of 8 days without antiviral medication, pandemic period 9 weeks; B) 30% attack rate and mean length of stay of 8 days with antiviral medication, pandemic period 14 weeks; C) 30% attack rate and mean length of stay of 15 days without antiviral medication, pandemic period 9 weeks; D) 30% attack rate and mean length of stay of 15 days with antiviral medication, pandemic period 14 weeks.
Mentions: We present the impact of a pandemic with new human-transmissible influenza on hospital resources in the northern part of the Netherlands. Using the figures of the RIVM, and assuming a 30% cumulative disease attack rate, we estimated that ≈12% of the population will consult a general practitioner (Table 2). The percentage of persons triaged for hospital admission is 0.3%. We assumed excess deaths among these selected patients, some 50% of whom may require mechanical ventilation (Figure 1). In the northern part of the Netherlands 5,629 regular hospital beds are available. The hospitals in this region have a total of 30% (non–influenza-related) acute care, which would leave 3,940 regular hospital beds that could be made available for influenza-related hospital admissions. If the attack rate reaches a maximum of 50% with a mean length of stay of 15 hospital days per patient, without any intervention, this would lead to a peak of 1,227 occupied regular hospital beds, which would suffice for influenza-related acute care. Therefore, we centered our calculations around the peak occupancy of intensive care beds. We calculated the number of hospital admissions per week, spread evenly across 7 days in the respective week, and we subtracted the number of deaths, also evenly spread across the week. We assumed that 25%–50% of total hospital admission patients would require some form of mechanical ventilator support, and we provide calculations for the extremes of our estimates. On the basis of results from a semistructured telephone interview with ICU medical staff of the hospitals in the 3 northern provinces, a maximum of 136 (of a total of 200) ICU beds could be dedicated to influenza-related acute-care patients. We estimate that 90 ICU beds will be made available in a short period. In the scenario of no additional intervention, if the full capacity of all 136 ICU beds is used, with an attack rate of 30%, 25% ICU admissions, and a mean length of stay of 8 days, we would have a shortage of 3 ICU beds at day 28 after onset, when we expect the pandemic to peak. This shortage in ICU capacity is exacerbated with any increase in hospital length of stay or ICU length of stay.

Bottom Line: We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area.We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support.Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.

View Article: PubMed Central - PubMed

Affiliation: University Medical Center Groningen, Groningen, the Netherlands. r.e.nap@rvb.umcg.nl

ABSTRACT
Using estimates from the Centers for Disease Control and Prevention, the World Health Organization, and published models of the expected evolution of pandemic influenza, we modeled the surge capacity of healthcare facility and intensive care unit (ICU) requirements over time in northern Netherlands (approximately 1.7 million population). We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area. We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support. Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.

Show MeSH
Related in: MedlinePlus