Limits...
Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times.

Barnett-Cowan M, Raeder SM, Bülthoff HH - Exp Brain Res (2012)

Bottom Line: It has been recently reported, however, that despite having similar transduction latencies, vestibular stimuli are perceived significantly later than auditory stimuli when simultaneously generated.Head movements paired with long square sounds (~100 ms) were not significantly different than brief sounds.Rather, differences between sound conditions were found to be attributable to variability in the time for head movement to reach peak velocity: the head moved faster when paired with a brief sound.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany. mbarnettcowan@gmail.com

ABSTRACT
The perception of simultaneity between auditory and vestibular information is crucially important for maintaining a coherent representation of the acoustic environment whenever the head moves. It has been recently reported, however, that despite having similar transduction latencies, vestibular stimuli are perceived significantly later than auditory stimuli when simultaneously generated. This suggests that perceptual latency of a head movement is longer than a co-occurring sound. However, these studies paired a vestibular stimulation of long duration (~1 s) and of a continuously changing temporal envelope with a brief (10-50 ms) sound pulse. In the present study, the stimuli were matched for temporal envelope duration and shape. Participants judged the temporal order of the two stimuli, the onset of an active head movement and the onset of brief (50 ms) or long (1,400 ms) sounds with a square- or raised-cosine-shaped envelope. Consistent with previous reports, head movement onset had to precede the onset of a brief sound by about 73 ms in order for the stimuli to be perceived as simultaneous. Head movements paired with long square sounds (~100 ms) were not significantly different than brief sounds. Surprisingly, head movements paired with long raised-cosine sound (~115 ms) had to be presented even earlier than brief stimuli. This additional lead time could not be accounted for by differences in the comparison stimulus characteristics (temporal envelope duration and shape). Rather, differences between sound conditions were found to be attributable to variability in the time for head movement to reach peak velocity: the head moved faster when paired with a brief sound. The persistent lead time required for vestibular stimulation provides further evidence that the perceptual latency of vestibular stimulation is greater than the other senses.

Show MeSH
Trial design schematic. The trial begins with the offset of a go sound (200 Hz; time: 0 ms). The onset of either a brief square sound (50 ms, 2,000 Hz), a long square sound (1,400 ms, 2,000 Hz) or a long raised-cosine sound (1,400 ms, 2,000 Hz) occurred anywhere from 0 to 650 ms thereafter. The two traces in the lower panel show the position (black line, left-hand scale) and velocity (gray line, right-hand scale) of a typical head movement. The point of onset of head movement (indicated by the arrow) was defined in post hoc analysis (see “General methods”)
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3375482&req=5

Fig1: Trial design schematic. The trial begins with the offset of a go sound (200 Hz; time: 0 ms). The onset of either a brief square sound (50 ms, 2,000 Hz), a long square sound (1,400 ms, 2,000 Hz) or a long raised-cosine sound (1,400 ms, 2,000 Hz) occurred anywhere from 0 to 650 ms thereafter. The two traces in the lower panel show the position (black line, left-hand scale) and velocity (gray line, right-hand scale) of a typical head movement. The point of onset of head movement (indicated by the arrow) was defined in post hoc analysis (see “General methods”)

Mentions: Figure 1 schematically shows the presentation of the stimuli in each trial. For each trial, participants were instructed to move their heads to the right and then back again to the left at the trained speed. Head movements were made following the offset of a “go” sound (200 Hz—not 2,000 Hz—sinusoidal waveform, 80 db), which also triggered a comparison stimulus. The duration of the go stimulus (i.e., intertrial interval) was 3 s, with an additional random 0–1.5 s duration to prevent anticipatory head movements. On account of the reaction time latencies relative to the go signal, comparison stimuli could occur before or after the head movement (c.f., Barnett-Cowan and Harris 2011). A comparison sound stimulus was presented between 0 and 650 ms after the go stimulus offset.Fig. 1


Persistent perceptual delay for head movement onset relative to auditory stimuli of different durations and rise times.

Barnett-Cowan M, Raeder SM, Bülthoff HH - Exp Brain Res (2012)

Trial design schematic. The trial begins with the offset of a go sound (200 Hz; time: 0 ms). The onset of either a brief square sound (50 ms, 2,000 Hz), a long square sound (1,400 ms, 2,000 Hz) or a long raised-cosine sound (1,400 ms, 2,000 Hz) occurred anywhere from 0 to 650 ms thereafter. The two traces in the lower panel show the position (black line, left-hand scale) and velocity (gray line, right-hand scale) of a typical head movement. The point of onset of head movement (indicated by the arrow) was defined in post hoc analysis (see “General methods”)
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3375482&req=5

Fig1: Trial design schematic. The trial begins with the offset of a go sound (200 Hz; time: 0 ms). The onset of either a brief square sound (50 ms, 2,000 Hz), a long square sound (1,400 ms, 2,000 Hz) or a long raised-cosine sound (1,400 ms, 2,000 Hz) occurred anywhere from 0 to 650 ms thereafter. The two traces in the lower panel show the position (black line, left-hand scale) and velocity (gray line, right-hand scale) of a typical head movement. The point of onset of head movement (indicated by the arrow) was defined in post hoc analysis (see “General methods”)
Mentions: Figure 1 schematically shows the presentation of the stimuli in each trial. For each trial, participants were instructed to move their heads to the right and then back again to the left at the trained speed. Head movements were made following the offset of a “go” sound (200 Hz—not 2,000 Hz—sinusoidal waveform, 80 db), which also triggered a comparison stimulus. The duration of the go stimulus (i.e., intertrial interval) was 3 s, with an additional random 0–1.5 s duration to prevent anticipatory head movements. On account of the reaction time latencies relative to the go signal, comparison stimuli could occur before or after the head movement (c.f., Barnett-Cowan and Harris 2011). A comparison sound stimulus was presented between 0 and 650 ms after the go stimulus offset.Fig. 1

Bottom Line: It has been recently reported, however, that despite having similar transduction latencies, vestibular stimuli are perceived significantly later than auditory stimuli when simultaneously generated.Head movements paired with long square sounds (~100 ms) were not significantly different than brief sounds.Rather, differences between sound conditions were found to be attributable to variability in the time for head movement to reach peak velocity: the head moved faster when paired with a brief sound.

View Article: PubMed Central - PubMed

Affiliation: Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany. mbarnettcowan@gmail.com

ABSTRACT
The perception of simultaneity between auditory and vestibular information is crucially important for maintaining a coherent representation of the acoustic environment whenever the head moves. It has been recently reported, however, that despite having similar transduction latencies, vestibular stimuli are perceived significantly later than auditory stimuli when simultaneously generated. This suggests that perceptual latency of a head movement is longer than a co-occurring sound. However, these studies paired a vestibular stimulation of long duration (~1 s) and of a continuously changing temporal envelope with a brief (10-50 ms) sound pulse. In the present study, the stimuli were matched for temporal envelope duration and shape. Participants judged the temporal order of the two stimuli, the onset of an active head movement and the onset of brief (50 ms) or long (1,400 ms) sounds with a square- or raised-cosine-shaped envelope. Consistent with previous reports, head movement onset had to precede the onset of a brief sound by about 73 ms in order for the stimuli to be perceived as simultaneous. Head movements paired with long square sounds (~100 ms) were not significantly different than brief sounds. Surprisingly, head movements paired with long raised-cosine sound (~115 ms) had to be presented even earlier than brief stimuli. This additional lead time could not be accounted for by differences in the comparison stimulus characteristics (temporal envelope duration and shape). Rather, differences between sound conditions were found to be attributable to variability in the time for head movement to reach peak velocity: the head moved faster when paired with a brief sound. The persistent lead time required for vestibular stimulation provides further evidence that the perceptual latency of vestibular stimulation is greater than the other senses.

Show MeSH