Limits...
The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin.

Qi Y, Operario DJ, Georas SN, Mosmann TR - PLoS ONE (2012)

Bottom Line: Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals.Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines.This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.

View Article: PubMed Central - PubMed

Affiliation: David H Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America.

ABSTRACT
Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.

Show MeSH

Related in: MedlinePlus

Several human CD4 T cell subsets can produce AR.(A) Allogeneic Th1 and Th2 cell lines from three subjects were stimulated with PMA + ionomycin for 6 hours. The percentage of cells expressing IFNγ, IL-4, and AR was analyzed by ICS. (B) The expression of AR and other cytokines was measured in SEB-stimulated PBMC from four subjects by ICS, calculating the frequencies of single cytokine producers, and all possible combinations of double-producers, among the CD154+ CD4+ T cells. The figure shows the ratio between the observed frequencies of double-producing T cells for each cytokine pair, and the expected frequencies (calculated as the product of the individual frequencies for each cytokine). Values represent the ratios for the double-producer combination defined by the row and column labels. Ratios above or below 1 are indicated by solid or open symbols, respectively. (C) IL-4, IFNγ and IL-2 mRNA levels were measured by RT-PCR in the sorted populations described in Figure 4C. (D) PBMC were treated with influenza H1N1 peptides or tetanus (five subjects each), or the allergens Fel d1 (solid symbols) or Der p1 (open symbols)(three subjects each). The numbers of memory CD4 T cells expressing AR and other cytokines were measured by ICS. The backgrounds (no antigen) have been subtracted. Each symbol represents one individual and the filled bar is the mean of all tested subjects. (E) CD69+ CD4+ T cells (Control_CD69+) were sorted from PBMC incubated in medium alone. CD69+IFNγ+ and CD69+IFNγ- CD4 T cells were sorted from influenza peptide-treated PBMC using the cytokine secretion assay. The mRNA levels of IFNγ and AR were measured by RT-PCR. Results in (A-C) are representative of at least three experiments, (D) represents two experiments using a total of 5 independent subjects, and (E) represents two experiments.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3375254&req=5

pone-0039072-g005: Several human CD4 T cell subsets can produce AR.(A) Allogeneic Th1 and Th2 cell lines from three subjects were stimulated with PMA + ionomycin for 6 hours. The percentage of cells expressing IFNγ, IL-4, and AR was analyzed by ICS. (B) The expression of AR and other cytokines was measured in SEB-stimulated PBMC from four subjects by ICS, calculating the frequencies of single cytokine producers, and all possible combinations of double-producers, among the CD154+ CD4+ T cells. The figure shows the ratio between the observed frequencies of double-producing T cells for each cytokine pair, and the expected frequencies (calculated as the product of the individual frequencies for each cytokine). Values represent the ratios for the double-producer combination defined by the row and column labels. Ratios above or below 1 are indicated by solid or open symbols, respectively. (C) IL-4, IFNγ and IL-2 mRNA levels were measured by RT-PCR in the sorted populations described in Figure 4C. (D) PBMC were treated with influenza H1N1 peptides or tetanus (five subjects each), or the allergens Fel d1 (solid symbols) or Der p1 (open symbols)(three subjects each). The numbers of memory CD4 T cells expressing AR and other cytokines were measured by ICS. The backgrounds (no antigen) have been subtracted. Each symbol represents one individual and the filled bar is the mean of all tested subjects. (E) CD69+ CD4+ T cells (Control_CD69+) were sorted from PBMC incubated in medium alone. CD69+IFNγ+ and CD69+IFNγ- CD4 T cells were sorted from influenza peptide-treated PBMC using the cytokine secretion assay. The mRNA levels of IFNγ and AR were measured by RT-PCR. Results in (A-C) are representative of at least three experiments, (D) represents two experiments using a total of 5 independent subjects, and (E) represents two experiments.

Mentions: Although naive CD4 T cells are relatively homogeneous, the memory population includes a wide range of differentiated effector subsets. As AR is expressed selectively by mouse Th2 cells, we examined whether AR production by human CD4 memory T cells was preferentially associated with expression of a particular cytokine or surface marker pattern. Th1- and Th2-biased human CD4 T cell populations were induced by stimulation of sorted naive human CD4 T cells with an allogeneic B cell line in Th1- or Th2-biasing cytokine conditions. The populations were further enriched by using the Cytokine Secretion Assay to sort IFNγ- or IL-5-producing cells, respectively. The resulting populations were strongly polarized, but unlike mouse T cells, both Th1 and Th2 human cell lines expressed AR (Figure 5A).


The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin.

Qi Y, Operario DJ, Georas SN, Mosmann TR - PLoS ONE (2012)

Several human CD4 T cell subsets can produce AR.(A) Allogeneic Th1 and Th2 cell lines from three subjects were stimulated with PMA + ionomycin for 6 hours. The percentage of cells expressing IFNγ, IL-4, and AR was analyzed by ICS. (B) The expression of AR and other cytokines was measured in SEB-stimulated PBMC from four subjects by ICS, calculating the frequencies of single cytokine producers, and all possible combinations of double-producers, among the CD154+ CD4+ T cells. The figure shows the ratio between the observed frequencies of double-producing T cells for each cytokine pair, and the expected frequencies (calculated as the product of the individual frequencies for each cytokine). Values represent the ratios for the double-producer combination defined by the row and column labels. Ratios above or below 1 are indicated by solid or open symbols, respectively. (C) IL-4, IFNγ and IL-2 mRNA levels were measured by RT-PCR in the sorted populations described in Figure 4C. (D) PBMC were treated with influenza H1N1 peptides or tetanus (five subjects each), or the allergens Fel d1 (solid symbols) or Der p1 (open symbols)(three subjects each). The numbers of memory CD4 T cells expressing AR and other cytokines were measured by ICS. The backgrounds (no antigen) have been subtracted. Each symbol represents one individual and the filled bar is the mean of all tested subjects. (E) CD69+ CD4+ T cells (Control_CD69+) were sorted from PBMC incubated in medium alone. CD69+IFNγ+ and CD69+IFNγ- CD4 T cells were sorted from influenza peptide-treated PBMC using the cytokine secretion assay. The mRNA levels of IFNγ and AR were measured by RT-PCR. Results in (A-C) are representative of at least three experiments, (D) represents two experiments using a total of 5 independent subjects, and (E) represents two experiments.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3375254&req=5

pone-0039072-g005: Several human CD4 T cell subsets can produce AR.(A) Allogeneic Th1 and Th2 cell lines from three subjects were stimulated with PMA + ionomycin for 6 hours. The percentage of cells expressing IFNγ, IL-4, and AR was analyzed by ICS. (B) The expression of AR and other cytokines was measured in SEB-stimulated PBMC from four subjects by ICS, calculating the frequencies of single cytokine producers, and all possible combinations of double-producers, among the CD154+ CD4+ T cells. The figure shows the ratio between the observed frequencies of double-producing T cells for each cytokine pair, and the expected frequencies (calculated as the product of the individual frequencies for each cytokine). Values represent the ratios for the double-producer combination defined by the row and column labels. Ratios above or below 1 are indicated by solid or open symbols, respectively. (C) IL-4, IFNγ and IL-2 mRNA levels were measured by RT-PCR in the sorted populations described in Figure 4C. (D) PBMC were treated with influenza H1N1 peptides or tetanus (five subjects each), or the allergens Fel d1 (solid symbols) or Der p1 (open symbols)(three subjects each). The numbers of memory CD4 T cells expressing AR and other cytokines were measured by ICS. The backgrounds (no antigen) have been subtracted. Each symbol represents one individual and the filled bar is the mean of all tested subjects. (E) CD69+ CD4+ T cells (Control_CD69+) were sorted from PBMC incubated in medium alone. CD69+IFNγ+ and CD69+IFNγ- CD4 T cells were sorted from influenza peptide-treated PBMC using the cytokine secretion assay. The mRNA levels of IFNγ and AR were measured by RT-PCR. Results in (A-C) are representative of at least three experiments, (D) represents two experiments using a total of 5 independent subjects, and (E) represents two experiments.
Mentions: Although naive CD4 T cells are relatively homogeneous, the memory population includes a wide range of differentiated effector subsets. As AR is expressed selectively by mouse Th2 cells, we examined whether AR production by human CD4 memory T cells was preferentially associated with expression of a particular cytokine or surface marker pattern. Th1- and Th2-biased human CD4 T cell populations were induced by stimulation of sorted naive human CD4 T cells with an allogeneic B cell line in Th1- or Th2-biasing cytokine conditions. The populations were further enriched by using the Cytokine Secretion Assay to sort IFNγ- or IL-5-producing cells, respectively. The resulting populations were strongly polarized, but unlike mouse T cells, both Th1 and Th2 human cell lines expressed AR (Figure 5A).

Bottom Line: Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals.Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines.This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.

View Article: PubMed Central - PubMed

Affiliation: David H Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America.

ABSTRACT
Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.

Show MeSH
Related in: MedlinePlus