Limits...
Deoiledjatropha seed cake is a useful nutrient for pullulan production.

Choudhury AR, Sharma N, Prasad GS - Microb. Cell Fact. (2012)

Bottom Line: In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially.The process was further validated in a 5 L laboratory scale fermenter.This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production.

View Article: PubMed Central - HTML - PubMed

Affiliation: Biochemical Engineering Research & Process Development Centre, CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India. anirban@imtech.res.in

ABSTRACT

Background: Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem.Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry.

Results: In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter.

Conclusion: This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production.

Show MeSH

Related in: MedlinePlus

© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3375191&req=5

Mentions: DOJSC is a rich source of protein (56.4-63.8%) and also contain fibers (8.1-9.1%) [18]. Although DOJSC is very rich in essential nutrients especially amino acids for growth of microbes, at higher concentrations it may be detrimental for growth and product formation. Hence it is important to find out optimum concentration of DOJSC for pullulan production. Shake flask fermentations were carried out by varying DOJSC concentration from 2% to 14% (w/v) in the production media. Initially the pullulan production increased with increase in DOJSC concentration from 61.18 g/L at 2% (w/v) to 82.57 g/L at 8% (w/v) concentration. However at concentration beyond 8% gradual reduction in pullulan production was observed and it went down to 69.21 g/L when DOJSC was increased up to 14% DOJSC (Figure 1). This may be attributed to that fact that higher concentration of DOJSC has a negative impact on the metabolic activities of microbial cells, which ultimately affect the production of the exopolysaccharide.


Deoiledjatropha seed cake is a useful nutrient for pullulan production.

Choudhury AR, Sharma N, Prasad GS - Microb. Cell Fact. (2012)

© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3375191&req=5

Mentions: DOJSC is a rich source of protein (56.4-63.8%) and also contain fibers (8.1-9.1%) [18]. Although DOJSC is very rich in essential nutrients especially amino acids for growth of microbes, at higher concentrations it may be detrimental for growth and product formation. Hence it is important to find out optimum concentration of DOJSC for pullulan production. Shake flask fermentations were carried out by varying DOJSC concentration from 2% to 14% (w/v) in the production media. Initially the pullulan production increased with increase in DOJSC concentration from 61.18 g/L at 2% (w/v) to 82.57 g/L at 8% (w/v) concentration. However at concentration beyond 8% gradual reduction in pullulan production was observed and it went down to 69.21 g/L when DOJSC was increased up to 14% DOJSC (Figure 1). This may be attributed to that fact that higher concentration of DOJSC has a negative impact on the metabolic activities of microbial cells, which ultimately affect the production of the exopolysaccharide.

Bottom Line: In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially.The process was further validated in a 5 L laboratory scale fermenter.This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production.

View Article: PubMed Central - HTML - PubMed

Affiliation: Biochemical Engineering Research & Process Development Centre, CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India. anirban@imtech.res.in

ABSTRACT

Background: Ever increasing demand for fossil fuels is a major factor for rapid depletion of these non-renewable energy resources, which has enhanced the interest of finding out alternative sources of energy. In recent years jatropha seed oil has been used extensively for production of bio-diesel and has shown significant potential to replace petroleum fuels at least partially. De-oiled jatropha seed cake (DOJSC) which comprises of approximately 55 to 65% of the biomass is a byproduct of bio-diesel industry. DOJSC contains toxic components like phorbol esters which restricts its utilization as animal feed. Thus along with the enhancement of biodiesel production from jatropha, there is an associated problem of handling this toxic byproduct. Utilization of DOJSC as a feed stock for production of biochemicals may be an attractive solution to the problem.Pullulan is an industrially important polysaccharide with several potential applications in food, pharmaceuticals and cosmetic industries. However, the major bottleneck for commercial utilization of pullulan is its high cost. A cost effective process for pullulan production may be developed using DOJSC as sole nutrient source which will in turn also help in utilization of the byproduct of bio-diesel industry.

Results: In the present study, DOJSC has been used as a nutrient for production of pullulan, in place of conventional nutrients like yeast extract and peptone. Process optimization was done in shake flasks, and under optimized conditions (8% DOJSC, 15% dextrose, 28°C temperature, 200 rpm, 5% inoculum, 6.0 pH) 83.98 g/L pullulan was obtained. The process was further validated in a 5 L laboratory scale fermenter.

Conclusion: This is the first report of using DOJSC as nutrient for production of an exopolysaccharide. Successful use of DOJSC as nutrient will help in finding significant application of this toxic byproduct of biodiesel industry. This in turn also have a significant impact on cost reduction and may lead to development of a cost effective green technology for pullulan production.

Show MeSH
Related in: MedlinePlus