Limits...
Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry.

Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E - PLoS ONE (2012)

Bottom Line: To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated.At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing.

View Article: PubMed Central - PubMed

Affiliation: School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom. kaveh.emami@ncl.ac.uk

ABSTRACT
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.

Show MeSH

Related in: MedlinePlus

MALDI-TOF mass spectra of two Serratia species. 16S rRNA sequencing indicated that isolates S21 and S33 were both Serratia plymuthica. However there are differences in their mass-spectral patterns. The whole m/z 2,000–20,000 spectra of the two isolates are shown in the main panel (left). The small panels show highlighted regions of the spectra with more significant the mass-to-charge ratio (m/z) differences.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369924&req=5

pone-0038515-g003: MALDI-TOF mass spectra of two Serratia species. 16S rRNA sequencing indicated that isolates S21 and S33 were both Serratia plymuthica. However there are differences in their mass-spectral patterns. The whole m/z 2,000–20,000 spectra of the two isolates are shown in the main panel (left). The small panels show highlighted regions of the spectra with more significant the mass-to-charge ratio (m/z) differences.

Mentions: Böhme et al. [30] used MALDI-TOF MS spectra for the characterization of seafood-associated bacterial species including Proteus, Pseudomonas, Vibrio and Serratia. Although Böhme et al. used a different sample preparation method in their study, there were common peaks between their Vibrio alginolyticus isolate and isolates S17 and S42 from the North Sea at m/z 3595, 4277, 4725, 5179, 7191, and 9446. (Fig. 2, Table 2). Interestingly, in the same study, Böhme and colleagues generated a Serratia liquefaciens mass spectrum that showed similarities with the protein fingerprints of the isolate of the respective bacterium from the ballast water obtained herein. There were for instance peaks at m/z 4347; 4780; 5395; and 6237 (Fig. 3, Table 2).


Characterization of bacteria in ballast water using MALDI-TOF mass spectrometry.

Emami K, Askari V, Ullrich M, Mohinudeen K, Anil AC, Khandeparker L, Burgess JG, Mesbahi E - PLoS ONE (2012)

MALDI-TOF mass spectra of two Serratia species. 16S rRNA sequencing indicated that isolates S21 and S33 were both Serratia plymuthica. However there are differences in their mass-spectral patterns. The whole m/z 2,000–20,000 spectra of the two isolates are shown in the main panel (left). The small panels show highlighted regions of the spectra with more significant the mass-to-charge ratio (m/z) differences.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369924&req=5

pone-0038515-g003: MALDI-TOF mass spectra of two Serratia species. 16S rRNA sequencing indicated that isolates S21 and S33 were both Serratia plymuthica. However there are differences in their mass-spectral patterns. The whole m/z 2,000–20,000 spectra of the two isolates are shown in the main panel (left). The small panels show highlighted regions of the spectra with more significant the mass-to-charge ratio (m/z) differences.
Mentions: Böhme et al. [30] used MALDI-TOF MS spectra for the characterization of seafood-associated bacterial species including Proteus, Pseudomonas, Vibrio and Serratia. Although Böhme et al. used a different sample preparation method in their study, there were common peaks between their Vibrio alginolyticus isolate and isolates S17 and S42 from the North Sea at m/z 3595, 4277, 4725, 5179, 7191, and 9446. (Fig. 2, Table 2). Interestingly, in the same study, Böhme and colleagues generated a Serratia liquefaciens mass spectrum that showed similarities with the protein fingerprints of the isolate of the respective bacterium from the ballast water obtained herein. There were for instance peaks at m/z 4347; 4780; 5395; and 6237 (Fig. 3, Table 2).

Bottom Line: To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated.At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing.

View Article: PubMed Central - PubMed

Affiliation: School of Biology, Newcastle University, Newcastle upon Tyne, United Kingdom. kaveh.emami@ncl.ac.uk

ABSTRACT
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.

Show MeSH
Related in: MedlinePlus