Limits...
Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B - PLoS ONE (2012)

Bottom Line: Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera).We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics.Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

View Article: PubMed Central - PubMed

Affiliation: ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany. heike.hadrys@ecolevol.de

ABSTRACT
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

Show MeSH
Phylogeny of insect orders.The phylogeny is based on information and figures in [56], [57], [58], [59]. Macro-evolutionary events in insect evolution, which are cited as being major Bauplan transitions, are mapped on the phylogeny. Pictures are modified after [60].
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369913&req=5

pone-0034682-g004: Phylogeny of insect orders.The phylogeny is based on information and figures in [56], [57], [58], [59]. Macro-evolutionary events in insect evolution, which are cited as being major Bauplan transitions, are mapped on the phylogeny. Pictures are modified after [60].

Mentions: The main goal of our study was to add as many new Hox cluster gene sequences from phylogenetically particularly important insect orders to the database as possible. The primer pairs used in this study proved to be successful for all 10 Hox cluster genes, but they did not amplify all homeobox fragments from all insect orders investigated in this study. Filling these gaps will require a different approach and possibly different primer sets. In contrast to previously used degenerate Hox primers our newly designed “insect specific” primers amplify significantly larger fragments (to almost full length homeoboxes), 120–164 instead of some 80 bp [39], [40]. With respect to preparing the grounds for comparative studies on the evolution of the winged insect bauplan the genes Scr, Antp and Ubx are of immediate importance [5], [19], [41], [42], [43]. We have isolated fragments from all three genes from Archaeognatha, Ephemeroptera, Odonata, and Plecoptera. If Odonata should represent the most basal pterygote insects (see above) the new sequences from odonates will become indispensable for comparative studies on the evolution of Pterygota (Fig. 4 and Table S1).


Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

Hadrys H, Simon S, Kaune B, Schmitt O, Schöner A, Jakob W, Schierwater B - PLoS ONE (2012)

Phylogeny of insect orders.The phylogeny is based on information and figures in [56], [57], [58], [59]. Macro-evolutionary events in insect evolution, which are cited as being major Bauplan transitions, are mapped on the phylogeny. Pictures are modified after [60].
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369913&req=5

pone-0034682-g004: Phylogeny of insect orders.The phylogeny is based on information and figures in [56], [57], [58], [59]. Macro-evolutionary events in insect evolution, which are cited as being major Bauplan transitions, are mapped on the phylogeny. Pictures are modified after [60].
Mentions: The main goal of our study was to add as many new Hox cluster gene sequences from phylogenetically particularly important insect orders to the database as possible. The primer pairs used in this study proved to be successful for all 10 Hox cluster genes, but they did not amplify all homeobox fragments from all insect orders investigated in this study. Filling these gaps will require a different approach and possibly different primer sets. In contrast to previously used degenerate Hox primers our newly designed “insect specific” primers amplify significantly larger fragments (to almost full length homeoboxes), 120–164 instead of some 80 bp [39], [40]. With respect to preparing the grounds for comparative studies on the evolution of the winged insect bauplan the genes Scr, Antp and Ubx are of immediate importance [5], [19], [41], [42], [43]. We have isolated fragments from all three genes from Archaeognatha, Ephemeroptera, Odonata, and Plecoptera. If Odonata should represent the most basal pterygote insects (see above) the new sequences from odonates will become indispensable for comparative studies on the evolution of Pterygota (Fig. 4 and Table S1).

Bottom Line: Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera).We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics.Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

View Article: PubMed Central - PubMed

Affiliation: ITZ, Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany. heike.hadrys@ecolevol.de

ABSTRACT
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

Show MeSH