Limits...
Elastogenic protein expression of a highly elastic murine spinal ligament: the ligamentum flavum.

Brown JP, Lind RM, Burzesi AF, Kuo CK - PLoS ONE (2012)

Bottom Line: We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth.These expression patterns correlated with reported skeletal and behavioral changes during murine development.This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America.

ABSTRACT
Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.

Show MeSH

Related in: MedlinePlus

H&E staining and cellularity results of LF.Top Three Rows: Representative images of H&E-stained LF (arrows point just inside edge of tissue) from all stages characterized. Scale bar: 50 µm. Bottom Panel: Results of cell nuclei quantification in LF sections from E16 to P2-yrs embryos and mice. Cellularity of the LF shows a significant decrease at P14, and appeared to be lowest at P2-yrs. Mean ± standard deviations, n = 3. *P<0.05 versus P0.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369910&req=5

pone-0038475-g002: H&E staining and cellularity results of LF.Top Three Rows: Representative images of H&E-stained LF (arrows point just inside edge of tissue) from all stages characterized. Scale bar: 50 µm. Bottom Panel: Results of cell nuclei quantification in LF sections from E16 to P2-yrs embryos and mice. Cellularity of the LF shows a significant decrease at P14, and appeared to be lowest at P2-yrs. Mean ± standard deviations, n = 3. *P<0.05 versus P0.

Mentions: Cellularity of the LF was characterized with H&E stained sections as a function of stage, ranging from E16 to P2-yrs (Fig. 2). The overall trend observed was that cellularity of the LF was relatively high through P7, decreased by P14, and remained fairly steady through P56. Cellularity appeared to decrease to a minimum by P2-yrs. Cellularity at P0 was not significantly different from stages E16-E18 or from P7, however it was significantly higher than P14 and later ages. From P14 to P35, the LF developed a straighter and thinner morphology, with a rope-like appearance typical of adult tendons and ligaments.


Elastogenic protein expression of a highly elastic murine spinal ligament: the ligamentum flavum.

Brown JP, Lind RM, Burzesi AF, Kuo CK - PLoS ONE (2012)

H&E staining and cellularity results of LF.Top Three Rows: Representative images of H&E-stained LF (arrows point just inside edge of tissue) from all stages characterized. Scale bar: 50 µm. Bottom Panel: Results of cell nuclei quantification in LF sections from E16 to P2-yrs embryos and mice. Cellularity of the LF shows a significant decrease at P14, and appeared to be lowest at P2-yrs. Mean ± standard deviations, n = 3. *P<0.05 versus P0.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369910&req=5

pone-0038475-g002: H&E staining and cellularity results of LF.Top Three Rows: Representative images of H&E-stained LF (arrows point just inside edge of tissue) from all stages characterized. Scale bar: 50 µm. Bottom Panel: Results of cell nuclei quantification in LF sections from E16 to P2-yrs embryos and mice. Cellularity of the LF shows a significant decrease at P14, and appeared to be lowest at P2-yrs. Mean ± standard deviations, n = 3. *P<0.05 versus P0.
Mentions: Cellularity of the LF was characterized with H&E stained sections as a function of stage, ranging from E16 to P2-yrs (Fig. 2). The overall trend observed was that cellularity of the LF was relatively high through P7, decreased by P14, and remained fairly steady through P56. Cellularity appeared to decrease to a minimum by P2-yrs. Cellularity at P0 was not significantly different from stages E16-E18 or from P7, however it was significantly higher than P14 and later ages. From P14 to P35, the LF developed a straighter and thinner morphology, with a rope-like appearance typical of adult tendons and ligaments.

Bottom Line: We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth.These expression patterns correlated with reported skeletal and behavioral changes during murine development.This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America.

ABSTRACT
Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.

Show MeSH
Related in: MedlinePlus