Limits...
An approach to enhance the conservation-compatibility of solar energy development.

Cameron DR, Cohen BS, Morrison SA - PLoS ONE (2012)

Bottom Line: Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity.We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over.Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

View Article: PubMed Central - PubMed

Affiliation: The Nature Conservancy, San Francisco, California, United States of America. dcameron@tnc.org

ABSTRACT
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

Show MeSH
Scenarios of suitable mitigation areas using the future ratios.This map shows the private land-only (pink) and the mixed ownership (blue) scenarios, with planning units that are shared in both scenarios (teal with outline). The private land-only solution is more dispersed and was not able to offset impacts for five targets in a subregion (grey outlines, labeled in Figure 2), most notably a deficit of over 23,000 hectares of suitable desert tortoise habitat in the Central Mojave subregion, north and east of Barstow, CA. Urbanized areas are shown in light grey. The extent of Ecologically Core (darker green) and Ecologically Intact (light green) is shown for reference (adapted from Randall et al. 2010). Projects used to calculate impacts and drive mitigation demand are shown in brown.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369905&req=5

pone-0038437-g007: Scenarios of suitable mitigation areas using the future ratios.This map shows the private land-only (pink) and the mixed ownership (blue) scenarios, with planning units that are shared in both scenarios (teal with outline). The private land-only solution is more dispersed and was not able to offset impacts for five targets in a subregion (grey outlines, labeled in Figure 2), most notably a deficit of over 23,000 hectares of suitable desert tortoise habitat in the Central Mojave subregion, north and east of Barstow, CA. Urbanized areas are shown in light grey. The extent of Ecologically Core (darker green) and Ecologically Intact (light green) is shown for reference (adapted from Randall et al. 2010). Projects used to calculate impacts and drive mitigation demand are shown in brown.

Mentions: We calculated a total footprint of 31,994 ha for proposed solar energy generation facilities under verified Right of Way applications on BLM lands and on private lands of the western, central and south-central subregions of the ecoregion. Meeting compensatory mitigation needs for these proposed projects would contribute more to regional conservation goals if mitigation is not restricted to private lands. For example, if we use the “future” mitigation ratio and restrict mitigation investment to private lands, there will not be enough higher conservation value private land in the central Mojave subregion to offset impacts for five conservation targets, including the desert tortoise, which falls short of the mitigation need by 38% (23,104 ha) (Figure 7). In contrast, if public lands are also eligible for investment, mitigation requirements under the future ratio could be met for all but two targets (playa is short by 601 ha and desert pavement is short by 30 ha) (Figure 7). Moreover, in the private land only scenario, lands selected for mitigation at both ratio levels are more fragmented than the mixed ownership scenario (as reflected in higher edge length of the full selected network, 15% higher for current ratios and 52% for future ratios). The areas selected in the private land only, current scenario are slightly more degraded (11%, as indicated by the average Marxan “cost” per selected assessment unit) than the mixed ownership solution (Table 3). This difference in degradation jumps to 60% using the future ratios, which is largely due to Marxan seeking to meet the mitigation goals for tortoise, by having to include areas that may be relatively more impacted.


An approach to enhance the conservation-compatibility of solar energy development.

Cameron DR, Cohen BS, Morrison SA - PLoS ONE (2012)

Scenarios of suitable mitigation areas using the future ratios.This map shows the private land-only (pink) and the mixed ownership (blue) scenarios, with planning units that are shared in both scenarios (teal with outline). The private land-only solution is more dispersed and was not able to offset impacts for five targets in a subregion (grey outlines, labeled in Figure 2), most notably a deficit of over 23,000 hectares of suitable desert tortoise habitat in the Central Mojave subregion, north and east of Barstow, CA. Urbanized areas are shown in light grey. The extent of Ecologically Core (darker green) and Ecologically Intact (light green) is shown for reference (adapted from Randall et al. 2010). Projects used to calculate impacts and drive mitigation demand are shown in brown.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369905&req=5

pone-0038437-g007: Scenarios of suitable mitigation areas using the future ratios.This map shows the private land-only (pink) and the mixed ownership (blue) scenarios, with planning units that are shared in both scenarios (teal with outline). The private land-only solution is more dispersed and was not able to offset impacts for five targets in a subregion (grey outlines, labeled in Figure 2), most notably a deficit of over 23,000 hectares of suitable desert tortoise habitat in the Central Mojave subregion, north and east of Barstow, CA. Urbanized areas are shown in light grey. The extent of Ecologically Core (darker green) and Ecologically Intact (light green) is shown for reference (adapted from Randall et al. 2010). Projects used to calculate impacts and drive mitigation demand are shown in brown.
Mentions: We calculated a total footprint of 31,994 ha for proposed solar energy generation facilities under verified Right of Way applications on BLM lands and on private lands of the western, central and south-central subregions of the ecoregion. Meeting compensatory mitigation needs for these proposed projects would contribute more to regional conservation goals if mitigation is not restricted to private lands. For example, if we use the “future” mitigation ratio and restrict mitigation investment to private lands, there will not be enough higher conservation value private land in the central Mojave subregion to offset impacts for five conservation targets, including the desert tortoise, which falls short of the mitigation need by 38% (23,104 ha) (Figure 7). In contrast, if public lands are also eligible for investment, mitigation requirements under the future ratio could be met for all but two targets (playa is short by 601 ha and desert pavement is short by 30 ha) (Figure 7). Moreover, in the private land only scenario, lands selected for mitigation at both ratio levels are more fragmented than the mixed ownership scenario (as reflected in higher edge length of the full selected network, 15% higher for current ratios and 52% for future ratios). The areas selected in the private land only, current scenario are slightly more degraded (11%, as indicated by the average Marxan “cost” per selected assessment unit) than the mixed ownership solution (Table 3). This difference in degradation jumps to 60% using the future ratios, which is largely due to Marxan seeking to meet the mitigation goals for tortoise, by having to include areas that may be relatively more impacted.

Bottom Line: Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity.We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over.Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

View Article: PubMed Central - PubMed

Affiliation: The Nature Conservancy, San Francisco, California, United States of America. dcameron@tnc.org

ABSTRACT
The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California's current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%)--an area that can meet California's renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.

Show MeSH