Limits...
The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes.

Yang CR, Wei Y, Qi ST, Chen L, Zhang QH, Ma JY, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun QY - PLoS ONE (2012)

Bottom Line: The results showed that GPR3 was expressed at various stages during porcine oocyte maturation.On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation.Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation.

View Article: PubMed Central - PubMed

Affiliation: College of Life Science, Northeast Agricultural University of China, Harbin, China.

ABSTRACT
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.

Show MeSH

Related in: MedlinePlus

The effect of SPC on distribution of GPR3 in porcine oocytes.Distribution of GPR3 in oocytes after treatment with SPC was revealed by immunofluorescent staining. In the GV stage, GPR3 was mainly distributed at the nuclear membrane and plasma membrane. GPR3 accumulated in the inner cytoplasm and plasma at the pro-MI stage. From MI to MII stages, GPR3 aggregated at the plasma membrane. Green, GPR3; Blue, chromatin. Bar = 40 µm.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369857&req=5

pone-0038807-g005: The effect of SPC on distribution of GPR3 in porcine oocytes.Distribution of GPR3 in oocytes after treatment with SPC was revealed by immunofluorescent staining. In the GV stage, GPR3 was mainly distributed at the nuclear membrane and plasma membrane. GPR3 accumulated in the inner cytoplasm and plasma at the pro-MI stage. From MI to MII stages, GPR3 aggregated at the plasma membrane. Green, GPR3; Blue, chromatin. Bar = 40 µm.

Mentions: To detect whether a GPR3 ligand, sphingosylphosphorylcholine (SPC), affects the localization of GPR3, we used immunofluorescence staining to investigate the distribution of GPR3 after ligand treatment. As shown in Fig. 5, GPR3 mainly distributed at nuclear membrane at the GV stage, while some GPR3 also distributed in the plasma membrane. At pro-MI stage, the positive signal of GPR3 was detected in the inner cytoplasm and plasma membrane. In the MI and MII stages, GPR3 was distributed at the plasma membrane. The distribution pattern of GPR3 was the same as that of oocyte under normal culture, indicating that ligand treatment did not affect the localization of GPR3.


The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes.

Yang CR, Wei Y, Qi ST, Chen L, Zhang QH, Ma JY, Luo YB, Wang YP, Hou Y, Schatten H, Liu ZH, Sun QY - PLoS ONE (2012)

The effect of SPC on distribution of GPR3 in porcine oocytes.Distribution of GPR3 in oocytes after treatment with SPC was revealed by immunofluorescent staining. In the GV stage, GPR3 was mainly distributed at the nuclear membrane and plasma membrane. GPR3 accumulated in the inner cytoplasm and plasma at the pro-MI stage. From MI to MII stages, GPR3 aggregated at the plasma membrane. Green, GPR3; Blue, chromatin. Bar = 40 µm.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369857&req=5

pone-0038807-g005: The effect of SPC on distribution of GPR3 in porcine oocytes.Distribution of GPR3 in oocytes after treatment with SPC was revealed by immunofluorescent staining. In the GV stage, GPR3 was mainly distributed at the nuclear membrane and plasma membrane. GPR3 accumulated in the inner cytoplasm and plasma at the pro-MI stage. From MI to MII stages, GPR3 aggregated at the plasma membrane. Green, GPR3; Blue, chromatin. Bar = 40 µm.
Mentions: To detect whether a GPR3 ligand, sphingosylphosphorylcholine (SPC), affects the localization of GPR3, we used immunofluorescence staining to investigate the distribution of GPR3 after ligand treatment. As shown in Fig. 5, GPR3 mainly distributed at nuclear membrane at the GV stage, while some GPR3 also distributed in the plasma membrane. At pro-MI stage, the positive signal of GPR3 was detected in the inner cytoplasm and plasma membrane. In the MI and MII stages, GPR3 was distributed at the plasma membrane. The distribution pattern of GPR3 was the same as that of oocyte under normal culture, indicating that ligand treatment did not affect the localization of GPR3.

Bottom Line: The results showed that GPR3 was expressed at various stages during porcine oocyte maturation.On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation.Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation.

View Article: PubMed Central - PubMed

Affiliation: College of Life Science, Northeast Agricultural University of China, Harbin, China.

ABSTRACT
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.

Show MeSH
Related in: MedlinePlus