Limits...
Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.

Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJ, Hube B - PLoS ONE (2012)

Bottom Line: Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions.Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines.Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany.

ABSTRACT
Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.

Show MeSH

Related in: MedlinePlus

Model of Hsp21-dependent adaptation to elevated temperature.Heat stress induces Hsp21-dependent activation of Cek1, trehalose accumulation and thermal adaptation of C. albicans.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369842&req=5

pone-0038584-g009: Model of Hsp21-dependent adaptation to elevated temperature.Heat stress induces Hsp21-dependent activation of Cek1, trehalose accumulation and thermal adaptation of C. albicans.

Mentions: The dominant cellular function of Hsp21 appears to be thermal stress adaptation (Figure 9). The hsp21Δ/Δ mutant produced significantly less trehalose than the wild type under long-term elevated temperature. Trehalose is an important stress-protective molecule with chaperone-like functions and is specifically produced during heat and oxidative stress [85], [97], [98]. Therefore, Hsp21 is involved in thermal-induced trehalose synthesis, possibly via stabilizing metabolic enzymes such as Tps1–3. Interestingly, glycerol was over-produced by hsp21Δ/Δ cells in response to thermal stress. This directly demonstrates that, although incapable of growth, hsp21Δ/Δ cells were metabolically active under thermal stress and indicates that Hps21 rather fine-tunes the cellular balance of stress protectant molecules in response to environmental conditions.


Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.

Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S, Bohovych IM, Brown AJ, Hube B - PLoS ONE (2012)

Model of Hsp21-dependent adaptation to elevated temperature.Heat stress induces Hsp21-dependent activation of Cek1, trehalose accumulation and thermal adaptation of C. albicans.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369842&req=5

pone-0038584-g009: Model of Hsp21-dependent adaptation to elevated temperature.Heat stress induces Hsp21-dependent activation of Cek1, trehalose accumulation and thermal adaptation of C. albicans.
Mentions: The dominant cellular function of Hsp21 appears to be thermal stress adaptation (Figure 9). The hsp21Δ/Δ mutant produced significantly less trehalose than the wild type under long-term elevated temperature. Trehalose is an important stress-protective molecule with chaperone-like functions and is specifically produced during heat and oxidative stress [85], [97], [98]. Therefore, Hsp21 is involved in thermal-induced trehalose synthesis, possibly via stabilizing metabolic enzymes such as Tps1–3. Interestingly, glycerol was over-produced by hsp21Δ/Δ cells in response to thermal stress. This directly demonstrates that, although incapable of growth, hsp21Δ/Δ cells were metabolically active under thermal stress and indicates that Hps21 rather fine-tunes the cellular balance of stress protectant molecules in response to environmental conditions.

Bottom Line: Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions.Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines.Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany.

ABSTRACT
Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C. albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.

Show MeSH
Related in: MedlinePlus