Limits...
Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S - PLoS ONE (2012)

Bottom Line: The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades.When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants.Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

Show MeSH

Related in: MedlinePlus

H. armigera larvae feeding with transgenic tobacco plants expressing HaEcR dsRNA die with significant molting defects.Fifty H. armigera larvae were fed with a detached mature leaf maintained in an 80 mm sterile plastic flask. Three similar leaves from the same plant were repeated in a feeding bioassay. The other conditions are the same as Figure 3. (A) Leaves from transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA. (B) The growth of H. armigera larvae feeding with transgenic tobacco leaves expressing HaEcR dsRNA was significantly delayed and their body sizes reduced. (C) Feeding with transgenic tobacco leaves expressing HaEcR dsRNA (No. 1–4) caused significantly higher lethality than in the control.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369839&req=5

pone-0038572-g004: H. armigera larvae feeding with transgenic tobacco plants expressing HaEcR dsRNA die with significant molting defects.Fifty H. armigera larvae were fed with a detached mature leaf maintained in an 80 mm sterile plastic flask. Three similar leaves from the same plant were repeated in a feeding bioassay. The other conditions are the same as Figure 3. (A) Leaves from transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA. (B) The growth of H. armigera larvae feeding with transgenic tobacco leaves expressing HaEcR dsRNA was significantly delayed and their body sizes reduced. (C) Feeding with transgenic tobacco leaves expressing HaEcR dsRNA (No. 1–4) caused significantly higher lethality than in the control.

Mentions: Meanwhile, insect-feeding trials with detached mature leaves showed that transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA (Fig 4A). Importantly, the growth of H. armigera larvae feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA was significantly delayed and their body sizes reduced, mostly because it took them a much longer time to molt than the control animals (Figure 4B). Moreover, feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA caused significantly higher lethality (40%) than in the control (10%) (Figure 4C). In conclusion, the H. armigera larvae feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA died with significant molting defects similar to those feeding with bacterially expressed HaEcR dsRNA.


Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S - PLoS ONE (2012)

H. armigera larvae feeding with transgenic tobacco plants expressing HaEcR dsRNA die with significant molting defects.Fifty H. armigera larvae were fed with a detached mature leaf maintained in an 80 mm sterile plastic flask. Three similar leaves from the same plant were repeated in a feeding bioassay. The other conditions are the same as Figure 3. (A) Leaves from transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA. (B) The growth of H. armigera larvae feeding with transgenic tobacco leaves expressing HaEcR dsRNA was significantly delayed and their body sizes reduced. (C) Feeding with transgenic tobacco leaves expressing HaEcR dsRNA (No. 1–4) caused significantly higher lethality than in the control.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369839&req=5

pone-0038572-g004: H. armigera larvae feeding with transgenic tobacco plants expressing HaEcR dsRNA die with significant molting defects.Fifty H. armigera larvae were fed with a detached mature leaf maintained in an 80 mm sterile plastic flask. Three similar leaves from the same plant were repeated in a feeding bioassay. The other conditions are the same as Figure 3. (A) Leaves from transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA. (B) The growth of H. armigera larvae feeding with transgenic tobacco leaves expressing HaEcR dsRNA was significantly delayed and their body sizes reduced. (C) Feeding with transgenic tobacco leaves expressing HaEcR dsRNA (No. 1–4) caused significantly higher lethality than in the control.
Mentions: Meanwhile, insect-feeding trials with detached mature leaves showed that transgenic tobacco plants expressing HaEcR dsRNA were ingested significantly less by H. armigera larvae after 5 days of incubation in comparison with those expressing GFP dsRNA (Fig 4A). Importantly, the growth of H. armigera larvae feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA was significantly delayed and their body sizes reduced, mostly because it took them a much longer time to molt than the control animals (Figure 4B). Moreover, feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA caused significantly higher lethality (40%) than in the control (10%) (Figure 4C). In conclusion, the H. armigera larvae feeding with leaves of transgenic tobacco plants expressing HaEcR dsRNA died with significant molting defects similar to those feeding with bacterially expressed HaEcR dsRNA.

Bottom Line: The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades.When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants.Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

Show MeSH
Related in: MedlinePlus