Limits...
Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S - PLoS ONE (2012)

Bottom Line: The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades.When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants.Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

Show MeSH

Related in: MedlinePlus

Generation of transgenic tobacco plants producing HaEcR dsRNA and GFP dsRNA.(A) pBI121-dsEcR: the constructed pBI121 vector expressing hairpin HaEcR dsRNA in transgenic tobacco plants. See details in materials and methods. (B) Transgenic tobacco plants expressing dsRNAs were obtained using the standard procedure. (C)Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications of the genomic DNA. (D) Homologous transgenic tobacco plants were selected by kanamycin after three progenies. See details in materials and methods.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369839&req=5

pone-0038572-g002: Generation of transgenic tobacco plants producing HaEcR dsRNA and GFP dsRNA.(A) pBI121-dsEcR: the constructed pBI121 vector expressing hairpin HaEcR dsRNA in transgenic tobacco plants. See details in materials and methods. (B) Transgenic tobacco plants expressing dsRNAs were obtained using the standard procedure. (C)Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications of the genomic DNA. (D) Homologous transgenic tobacco plants were selected by kanamycin after three progenies. See details in materials and methods.

Mentions: Since bacterially expressed HaEcR dsRNA causes more significant molting defects in H. armigera than bacterially expressed HaUSP dsRNA, in the following transgenic plants, only the hairpain HaEcR dsRNA was expressed. The hairpin GFP dsRNA was expressed as a control. The GUS reporter gene in the expression vector, PBI121, was replaced by hairpin dsRNA of either HaEcR or GFP (Fig 2A), and transgenic tobacco plants were obtained (Figure 2B). Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications, showing that the hairpin dsRNAs were inserted into tobacco genomic DNA successfully (Fig 2C). Homologous transgenic plants were selected (Fig 2D) and used for further experiments. The growth of the transgenic tobacco plants expressing hairpin dsRNA was indistinguishable from that of the wild-type plants.


Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

Zhu JQ, Liu S, Ma Y, Zhang JQ, Qi HS, Wei ZJ, Yao Q, Zhang WQ, Li S - PLoS ONE (2012)

Generation of transgenic tobacco plants producing HaEcR dsRNA and GFP dsRNA.(A) pBI121-dsEcR: the constructed pBI121 vector expressing hairpin HaEcR dsRNA in transgenic tobacco plants. See details in materials and methods. (B) Transgenic tobacco plants expressing dsRNAs were obtained using the standard procedure. (C)Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications of the genomic DNA. (D) Homologous transgenic tobacco plants were selected by kanamycin after three progenies. See details in materials and methods.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369839&req=5

pone-0038572-g002: Generation of transgenic tobacco plants producing HaEcR dsRNA and GFP dsRNA.(A) pBI121-dsEcR: the constructed pBI121 vector expressing hairpin HaEcR dsRNA in transgenic tobacco plants. See details in materials and methods. (B) Transgenic tobacco plants expressing dsRNAs were obtained using the standard procedure. (C)Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications of the genomic DNA. (D) Homologous transgenic tobacco plants were selected by kanamycin after three progenies. See details in materials and methods.
Mentions: Since bacterially expressed HaEcR dsRNA causes more significant molting defects in H. armigera than bacterially expressed HaUSP dsRNA, in the following transgenic plants, only the hairpain HaEcR dsRNA was expressed. The hairpin GFP dsRNA was expressed as a control. The GUS reporter gene in the expression vector, PBI121, was replaced by hairpin dsRNA of either HaEcR or GFP (Fig 2A), and transgenic tobacco plants were obtained (Figure 2B). Independently derived transgenic lines (E1–E9 for HaEcR dsRNA; G1–G6 for GFP dsRNA) were analyzed by PCR amplifications, showing that the hairpin dsRNAs were inserted into tobacco genomic DNA successfully (Fig 2C). Homologous transgenic plants were selected (Fig 2D) and used for further experiments. The growth of the transgenic tobacco plants expressing hairpin dsRNA was indistinguishable from that of the wild-type plants.

Bottom Line: The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades.When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants.Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA) targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E), predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

Show MeSH
Related in: MedlinePlus