Limits...
Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus

Standard deviation of hydrogen z-position distribution as a function of averaging time.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369821&req=5

Figure 7: Standard deviation of hydrogen z-position distribution as a function of averaging time.

Mentions: Figure 6 shows contour plots of the two equivalent potential wells for hydrogen, corresponding to two adjacent C atoms of graphene. The depth of the wells is about -0.61 eV. Thus, when the kinetic energy of H is comparable to the well depth, excited vibrational motion is possible after adsorption; to account for this, we average the change in El-h over a number of time steps at the end of the simulation. When doing this time-averaging, it is important to avoid time steps at which some of the hydrogen atoms have not yet bound to the graphene surface. Figure 7 displays the standard deviation of the hydrogen z-position distribution averaged over 1, 4, 12, and 24 fs of simulation time. In all cases, the mean value is within a single standard deviation of 1.2 Å.


Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Standard deviation of hydrogen z-position distribution as a function of averaging time.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369821&req=5

Figure 7: Standard deviation of hydrogen z-position distribution as a function of averaging time.
Mentions: Figure 6 shows contour plots of the two equivalent potential wells for hydrogen, corresponding to two adjacent C atoms of graphene. The depth of the wells is about -0.61 eV. Thus, when the kinetic energy of H is comparable to the well depth, excited vibrational motion is possible after adsorption; to account for this, we average the change in El-h over a number of time steps at the end of the simulation. When doing this time-averaging, it is important to avoid time steps at which some of the hydrogen atoms have not yet bound to the graphene surface. Figure 7 displays the standard deviation of the hydrogen z-position distribution averaged over 1, 4, 12, and 24 fs of simulation time. In all cases, the mean value is within a single standard deviation of 1.2 Å.

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus