Limits...
Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus

Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. Distributions found to fit the data are shown in black.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369821&req=5

Figure 5: Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. Distributions found to fit the data are shown in black.

Mentions: The scattering of incident noble gas atoms has been investigated at high energies (keV), where transmitted particles were found to have very little angular deflection while leaving the graphene relatively unaffected [8]. Here, similar results are found for hydrogen at lower energies. Figure 5 shows the angular cross sections of reflection and transmission for our SCC-DFTB results. Radii are normalized to unity for the purpose of comparison. Cross sections are calculated according to


Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. Distributions found to fit the data are shown in black.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369821&req=5

Figure 5: Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. Distributions found to fit the data are shown in black.
Mentions: The scattering of incident noble gas atoms has been investigated at high energies (keV), where transmitted particles were found to have very little angular deflection while leaving the graphene relatively unaffected [8]. Here, similar results are found for hydrogen at lower energies. Figure 5 shows the angular cross sections of reflection and transmission for our SCC-DFTB results. Radii are normalized to unity for the purpose of comparison. Cross sections are calculated according to

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus