Limits...
Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus

Potential energy of the H-graphene and H-coronene interactions at analogous points in the lattice. As calculated by the SCC-DFTB with the PBC-0-3/ZBL parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369821&req=5

Figure 2: Potential energy of the H-graphene and H-coronene interactions at analogous points in the lattice. As calculated by the SCC-DFTB with the PBC-0-3/ZBL parameters.

Mentions: Figure 2 compares the SCC-DFTB potential energy of the hydrogen-graphene and hydrogen-coronene interactions as a function of z-position above the graphene/coronene plane. The coronene potentials show bonding that is roughly 1 eV weaker and a potential barrier at the hexagon center that is 1 eV higher, reflecting the changes in electronic structure between hydrogen-terminated and periodic sp2 carbon. Despite these differences, the forms of the H-graphene and H-coronene interactions are very similar. Thus, the agreement of SCC-DFTB with DFT calculations of the coronene molecule in Figure 1 indicates that the PBC-0-3/ZBL SCC-DFTB parameters are as acceptable for use with graphene as the DFT approach.


Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Potential energy of the H-graphene and H-coronene interactions at analogous points in the lattice. As calculated by the SCC-DFTB with the PBC-0-3/ZBL parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369821&req=5

Figure 2: Potential energy of the H-graphene and H-coronene interactions at analogous points in the lattice. As calculated by the SCC-DFTB with the PBC-0-3/ZBL parameters.
Mentions: Figure 2 compares the SCC-DFTB potential energy of the hydrogen-graphene and hydrogen-coronene interactions as a function of z-position above the graphene/coronene plane. The coronene potentials show bonding that is roughly 1 eV weaker and a potential barrier at the hexagon center that is 1 eV higher, reflecting the changes in electronic structure between hydrogen-terminated and periodic sp2 carbon. Despite these differences, the forms of the H-graphene and H-coronene interactions are very similar. Thus, the agreement of SCC-DFTB with DFT calculations of the coronene molecule in Figure 1 indicates that the PBC-0-3/ZBL SCC-DFTB parameters are as acceptable for use with graphene as the DFT approach.

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus