Limits...
Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus

Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. As calculated in AIREBO CMD simulations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369821&req=5

Figure 13: Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. As calculated in AIREBO CMD simulations.

Mentions: Lastly, the CMD calculations result in larger angular scattering effects than SCC-DFTB, as can be seen in Figure 13. The reason for the markedly different distribution is again in the potential barriers that arise from the Lennard-Jones interactions. The stronger interaction produces a more significant change in the incident hydrogen x- or y-momentum, resulting in a cos(θ-θo) distribution with maximum at roughly 37°. Transmitting atoms also interact with the potential barriers on the opposite side of the surface, which are responsible for deflecting these atoms and producing the much wider distribution than observed in the SCC-DFTB calculations.


Detection of hydrogen using graphene.

Ehemann RC, Krstić PS, Dadras J, Kent PR, Jakowski J - Nanoscale Res Lett (2012)

Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. As calculated in AIREBO CMD simulations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369821&req=5

Figure 13: Angular distributions of reflected (θ < 90°) and transmitted (θ > 90°) hydrogen atoms. As calculated in AIREBO CMD simulations.
Mentions: Lastly, the CMD calculations result in larger angular scattering effects than SCC-DFTB, as can be seen in Figure 13. The reason for the markedly different distribution is again in the potential barriers that arise from the Lennard-Jones interactions. The stronger interaction produces a more significant change in the incident hydrogen x- or y-momentum, resulting in a cos(θ-θo) distribution with maximum at roughly 37°. Transmitting atoms also interact with the potential barriers on the opposite side of the surface, which are responsible for deflecting these atoms and producing the much wider distribution than observed in the SCC-DFTB calculations.

Bottom Line: Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV.Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, TN, 37130, USA. rce2g@mtmail.mtsu.edu.

ABSTRACT
Irradiation dynamics of a single graphene sheet bombarded by hydrogen atoms is studied in the incident energy range of 0.1 to 200 eV. Results for reflection, transmission, and adsorption probabilities, as well as effects of a single adsorbed atom to the electronic properties of graphene, are obtained by the quantum-classical Monte Carlo molecular dynamics within a self-consistent-charge-density functional tight binding formalism We compare these results with those, distinctly different, obtained by the classical molecular dynamics.PACS: 61.80.Az, 61.48.Gh, 61.80.Jh, 34.50.Dy.

No MeSH data available.


Related in: MedlinePlus