Limits...
Antimicrobial resistance of Escherichia coli O26, O103, O111, O128, and O145 from animals and humans.

Schroeder CM, Meng J, Zhao S, DebRoy C, Torcolini J, Zhao C, McDermott PF, Wagner DD, Walker RD, White DG - Emerging Infect. Dis. (2002)

Bottom Line: Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin.Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin.Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.

View Article: PubMed Central - PubMed

Affiliation: University of Maryland, College Park, USA.

ABSTRACT
Susceptibilities to fourteen antimicrobial agents important in clinical medicine and agriculture were determined for 752 Escherichia coli isolates of serotypes O26, O103, O111, O128, and O145. Strains of these serotypes may cause urinary tract and enteric infections in humans and have been implicated in infections with Shiga toxin-producing E. coli (STEC). Approximately 50% of the 137 isolates from humans were resistant to ampicillin, sulfamethoxazole, cephalothin, tetracycline, or streptomycin, and approximately 25% were resistant to chloramphenicol, trimethoprim-sulfamethoxazole, or amoxicillin-clavulanic acid. Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin. Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin. Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.

Show MeSH

Related in: MedlinePlus

Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, ciprofloxacin; Fur, ceftiofur; Te, tetracycline; T/S, trimethoprim-sulfamethoxazole; A/C, amoxicillin-clavulanic acid; Str, streptomycin.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369591&req=5

Figure 2: Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, ciprofloxacin; Fur, ceftiofur; Te, tetracycline; T/S, trimethoprim-sulfamethoxazole; A/C, amoxicillin-clavulanic acid; Str, streptomycin.

Mentions: Of E. coli isolates from cattle, resistance frequencies were generally similar between STEC and other E. coli, respectively, with the exception of ampicillin (26% vs. 8%), chloramphenicol (14% vs. 4%), cephalothin (14% vs. 3%), and trimethoprim-sulfamethoxazole (11% vs. 2%), in which resistance frequencies were noticeably higher (Figure 2A). In contrast, of isolates from humans, resistance frequencies were generally lower among STEC isolates compared with other E. coli (Figure 2B). Specifically, resistance frequencies were lower in STEC compared with other E. coli, respectively, for ampicillin (14% vs. 71%), chloramphenicol (5% vs. 44%), sulfamethoxazole (30% vs. 68%), cephalothin (11% vs. 64%), tetracycline (32% vs. 63%), trimethoprim-sulfamethoxazole (8% vs. 48%), amoxicillin-clavulanic acid (5% vs. 22%), and streptomycin (32% vs. 67%).


Antimicrobial resistance of Escherichia coli O26, O103, O111, O128, and O145 from animals and humans.

Schroeder CM, Meng J, Zhao S, DebRoy C, Torcolini J, Zhao C, McDermott PF, Wagner DD, Walker RD, White DG - Emerging Infect. Dis. (2002)

Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, ciprofloxacin; Fur, ceftiofur; Te, tetracycline; T/S, trimethoprim-sulfamethoxazole; A/C, amoxicillin-clavulanic acid; Str, streptomycin.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369591&req=5

Figure 2: Comparison of antimicrobial resistance frequencies between Shiga toxin–producing Escherichia coli (STEC) and other E. coli. Of isolates from cattle, resistance frequencies were similar between STEC and other E. coli (A). In contrast, of isolates from humans, resistance frequencies were generally lower for STEC compared with other E. coli (B). Am, ampicillin; Cx, cefoxitin; C, chloramphenicol; Frx, ceftriaxone; Smx, sulfamethoxazole; Cf, cephalothin; Gm, gentamicin; NA, nalidixic acid; Cip, ciprofloxacin; Fur, ceftiofur; Te, tetracycline; T/S, trimethoprim-sulfamethoxazole; A/C, amoxicillin-clavulanic acid; Str, streptomycin.
Mentions: Of E. coli isolates from cattle, resistance frequencies were generally similar between STEC and other E. coli, respectively, with the exception of ampicillin (26% vs. 8%), chloramphenicol (14% vs. 4%), cephalothin (14% vs. 3%), and trimethoprim-sulfamethoxazole (11% vs. 2%), in which resistance frequencies were noticeably higher (Figure 2A). In contrast, of isolates from humans, resistance frequencies were generally lower among STEC isolates compared with other E. coli (Figure 2B). Specifically, resistance frequencies were lower in STEC compared with other E. coli, respectively, for ampicillin (14% vs. 71%), chloramphenicol (5% vs. 44%), sulfamethoxazole (30% vs. 68%), cephalothin (11% vs. 64%), tetracycline (32% vs. 63%), trimethoprim-sulfamethoxazole (8% vs. 48%), amoxicillin-clavulanic acid (5% vs. 22%), and streptomycin (32% vs. 67%).

Bottom Line: Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin.Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin.Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.

View Article: PubMed Central - PubMed

Affiliation: University of Maryland, College Park, USA.

ABSTRACT
Susceptibilities to fourteen antimicrobial agents important in clinical medicine and agriculture were determined for 752 Escherichia coli isolates of serotypes O26, O103, O111, O128, and O145. Strains of these serotypes may cause urinary tract and enteric infections in humans and have been implicated in infections with Shiga toxin-producing E. coli (STEC). Approximately 50% of the 137 isolates from humans were resistant to ampicillin, sulfamethoxazole, cephalothin, tetracycline, or streptomycin, and approximately 25% were resistant to chloramphenicol, trimethoprim-sulfamethoxazole, or amoxicillin-clavulanic acid. Approximately 50% of the 534 isolates from food animals were resistant to sulfamethoxazole, tetracycline, or streptomycin. Of 195 isolates with STEC-related virulence genes, approximately 40% were resistant to sulfamethoxazole, tetracycline, or streptomycin. Findings from this study suggest antimicrobial resistance is widespread among E. coli O26, O103, O111, O128, and O145 inhabiting humans and food animals.

Show MeSH
Related in: MedlinePlus