Limits...
Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function.

Forchhammer L, Møller P, Riddervold IS, Bønløkke J, Massling A, Sigsgaard T, Loft S - Part Fibre Toxicol (2012)

Bottom Line: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09).The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure.

Methods: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia.

Results: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.

Conclusions: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

Show MeSH

Related in: MedlinePlus

Level of DNA damage in PBMCs measured 4 times during 24 h after each of the different wood smoke exposure scenarios (n = 20). The figure is divided in three sections. The dark grey section depicts the FPG sensitive sites. The light grey section depicts the EndoIII sensitive sites and the white section depicts the SB.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369202&req=5

Figure 3: Level of DNA damage in PBMCs measured 4 times during 24 h after each of the different wood smoke exposure scenarios (n = 20). The figure is divided in three sections. The dark grey section depicts the FPG sensitive sites. The light grey section depicts the EndoIII sensitive sites and the white section depicts the SB.

Mentions: Figure 3 depicts the relationship between the levels of DNA damage detected by the comet assay in terms of strand break (SB), endonuclease III (EndoIII) and formamidopyrimidine DNA glycosylase (FPG) sensitive sites [24] and different exposure scenarios at different time points. The SBs measured by the alkaline comet assay represent unspecific DNA damage, whereas incubation of the DNA with EndoIII or FPG gives measurements of oxidatively damaged pyrimidines and purines bases, respectively. Wood smoke exposure had no significant effect on the level of SB (p > 0.09), EndoIII- (p > 0.12) or FPG sensitive sites (p > 0.89). A test of the statistical power showed that we would have been able to measure a difference of 0.14 lesions/106 bp between the groups with 17 subjects per group. This means that we would be able to measure a 23% change in the level of oxidatively damaged DNA. The level of DNA damage (mean ± SEM) in the reference control samples were 0.16 ± 0.03 lesions/106 bp (SB, n = 18) and 1.12 ± 0.10 lesions/106 bp (FPG sensitive sites, n = 18).


Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function.

Forchhammer L, Møller P, Riddervold IS, Bønløkke J, Massling A, Sigsgaard T, Loft S - Part Fibre Toxicol (2012)

Level of DNA damage in PBMCs measured 4 times during 24 h after each of the different wood smoke exposure scenarios (n = 20). The figure is divided in three sections. The dark grey section depicts the FPG sensitive sites. The light grey section depicts the EndoIII sensitive sites and the white section depicts the SB.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369202&req=5

Figure 3: Level of DNA damage in PBMCs measured 4 times during 24 h after each of the different wood smoke exposure scenarios (n = 20). The figure is divided in three sections. The dark grey section depicts the FPG sensitive sites. The light grey section depicts the EndoIII sensitive sites and the white section depicts the SB.
Mentions: Figure 3 depicts the relationship between the levels of DNA damage detected by the comet assay in terms of strand break (SB), endonuclease III (EndoIII) and formamidopyrimidine DNA glycosylase (FPG) sensitive sites [24] and different exposure scenarios at different time points. The SBs measured by the alkaline comet assay represent unspecific DNA damage, whereas incubation of the DNA with EndoIII or FPG gives measurements of oxidatively damaged pyrimidines and purines bases, respectively. Wood smoke exposure had no significant effect on the level of SB (p > 0.09), EndoIII- (p > 0.12) or FPG sensitive sites (p > 0.89). A test of the statistical power showed that we would have been able to measure a difference of 0.14 lesions/106 bp between the groups with 17 subjects per group. This means that we would be able to measure a 23% change in the level of oxidatively damaged DNA. The level of DNA damage (mean ± SEM) in the reference control samples were 0.16 ± 0.03 lesions/106 bp (SB, n = 18) and 1.12 ± 0.10 lesions/106 bp (FPG sensitive sites, n = 18).

Bottom Line: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09).The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure.

Methods: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia.

Results: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.

Conclusions: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

Show MeSH
Related in: MedlinePlus