Limits...
Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function.

Forchhammer L, Møller P, Riddervold IS, Bønløkke J, Massling A, Sigsgaard T, Loft S - Part Fibre Toxicol (2012)

Bottom Line: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09).The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure.

Methods: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia.

Results: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.

Conclusions: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

Show MeSH

Related in: MedlinePlus

Mean mobility particle number size distribution obtained during the sessions of different exposure types representing two size modes of particulate matter in the climate chamber. The data are from [23] and the error bars are SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369202&req=5

Figure 1: Mean mobility particle number size distribution obtained during the sessions of different exposure types representing two size modes of particulate matter in the climate chamber. The data are from [23] and the error bars are SEM.

Mentions: The present study investigated the impact of different doses of wood smoke-derived PM2.5 (mean ± SD); a clean air exposure 14 ± 8 μg/m3, a relatively low concentration 220 ± 49 μg/m3 and a relatively high concentration 354 ± 148 μg/m3 (Table 1). The variation in observed particle number size distribution during the exposure sessions was considerable as illustrated by the error bars for 15 min values over the full exposure time of each exposure session type, depicted in Figure 1. Two size modes of particles with mean diameters of 67 nm and 157 nm were clearly visible at both exposure concentrations. There were high levels of polycyclic aromatic hydrocarbons (PAH) in PM collected at both exposure concentrations (Table 1).


Controlled human wood smoke exposure: oxidative stress, inflammation and microvascular function.

Forchhammer L, Møller P, Riddervold IS, Bønløkke J, Massling A, Sigsgaard T, Loft S - Part Fibre Toxicol (2012)

Mean mobility particle number size distribution obtained during the sessions of different exposure types representing two size modes of particulate matter in the climate chamber. The data are from [23] and the error bars are SEM.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369202&req=5

Figure 1: Mean mobility particle number size distribution obtained during the sessions of different exposure types representing two size modes of particulate matter in the climate chamber. The data are from [23] and the error bars are SEM.
Mentions: The present study investigated the impact of different doses of wood smoke-derived PM2.5 (mean ± SD); a clean air exposure 14 ± 8 μg/m3, a relatively low concentration 220 ± 49 μg/m3 and a relatively high concentration 354 ± 148 μg/m3 (Table 1). The variation in observed particle number size distribution during the exposure sessions was considerable as illustrated by the error bars for 15 min values over the full exposure time of each exposure session type, depicted in Figure 1. Two size modes of particles with mean diameters of 67 nm and 157 nm were clearly visible at both exposure concentrations. There were high levels of polycyclic aromatic hydrocarbons (PAH) in PM collected at both exposure concentrations (Table 1).

Bottom Line: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09).The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

View Article: PubMed Central - HTML - PubMed

Affiliation: Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

ABSTRACT

Background: Exposure to wood smoke is associated with respiratory symptoms, whereas knowledge on systemic effects is limited. We investigated effects on systemic inflammation, oxidative stress and microvascular function (MVF) after controlled wood smoke exposure.

Methods: In a randomised, double-blinded, cross-over study 20 non-smoking atopic subjects were exposed at rest to 14, 220, or 354 μg/m3 of particles from a well-burning modern wood stove for 3 h in a climate controlled chamber with 2 week intervals. We investigated the level of oxidatively damaged DNA, inflammatory markers and adhesion molecules before and 0, 6 and 20 h after exposure. Six h after exposure we measured MVF non-invasively by digital peripheral artery tonometry following arm ischemia.

Results: The MVF score was unaltered after inhalation of clean air (1.58 ± 0.07; mean ± SEM), low (1.51 ± 0.07) or high (1.61 ± 0.09) concentrations of wood smoke particles in atopic subjects, whereas unexposed non-atopic subjects had higher score (1.91 ± 0.09). The level of oxidatively damaged DNA, mRNA of ITGAL, CCL2, TNF, IL6, IL8, HMOX1, and OGG1 and surface marker molecules ICAM1, ITGAL and L-selectin in peripheral blood mononuclear cells were not affected by inhalation of wood smoke particles.

Conclusions: Exposure to wood smoke had no effect on markers of oxidative stress, DNA damage, cell adhesion, cytokines or MVF in atopic subjects.

Show MeSH
Related in: MedlinePlus