Limits...
When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

Henderson RK, Snyder HR, Gupta T, Banich MT - Front Psychol (2012)

Bottom Line: People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure.These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities.These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology and Neuroscience, University of Colorado at Boulder Boulder, CO, USA.

ABSTRACT
The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.

No MeSH data available.


Related in: MedlinePlus

Stress manipulation: In both Experiments 1 and 2, all groups completed a simple choice-RT task that either was accompanied by psychological stress in the form of performance feedback and noise exposure (controllable stress: CSt group and uncontrollable stress: USt group) or was not accompanied by these forms of stress (no-stress: NSt group). The manipulation consisted of a practice block that was identical across groups, followed by two testing blocks that varied between groups. Performance feedback (blocks 1 and 2): the NSt group received no performance feedback; the CSt group received accurate feedback indicating success or failure in responding fast enough to beat a time limit; the USt group received performance feedback that was unrelated to their response speed and either featured an exaggerated proportion of failure feedback (Experiment 1) or was equated on feedback with the CSt group (Experiment 2). Noise exposure (block 2): the NSt group received no noise exposure; the CSt group was able to learn that short noises were contingent on responding fast enough to beat time limits; the USt group was exposed to non-contingent noises unrelated to response speed or performance feedback, and the amount of short and long noises were equated with the CSt group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3369195&req=5

Figure 1: Stress manipulation: In both Experiments 1 and 2, all groups completed a simple choice-RT task that either was accompanied by psychological stress in the form of performance feedback and noise exposure (controllable stress: CSt group and uncontrollable stress: USt group) or was not accompanied by these forms of stress (no-stress: NSt group). The manipulation consisted of a practice block that was identical across groups, followed by two testing blocks that varied between groups. Performance feedback (blocks 1 and 2): the NSt group received no performance feedback; the CSt group received accurate feedback indicating success or failure in responding fast enough to beat a time limit; the USt group received performance feedback that was unrelated to their response speed and either featured an exaggerated proportion of failure feedback (Experiment 1) or was equated on feedback with the CSt group (Experiment 2). Noise exposure (block 2): the NSt group received no noise exposure; the CSt group was able to learn that short noises were contingent on responding fast enough to beat time limits; the USt group was exposed to non-contingent noises unrelated to response speed or performance feedback, and the amount of short and long noises were equated with the CSt group.

Mentions: Participants performed a choice-RT task and either were (USt and CSt groups) or were not (NSt group) exposed to concurrent psychological stress. The choice-RT task required participants to choose behavioral responses based on perceptual features in the display (Figure 1).


When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

Henderson RK, Snyder HR, Gupta T, Banich MT - Front Psychol (2012)

Stress manipulation: In both Experiments 1 and 2, all groups completed a simple choice-RT task that either was accompanied by psychological stress in the form of performance feedback and noise exposure (controllable stress: CSt group and uncontrollable stress: USt group) or was not accompanied by these forms of stress (no-stress: NSt group). The manipulation consisted of a practice block that was identical across groups, followed by two testing blocks that varied between groups. Performance feedback (blocks 1 and 2): the NSt group received no performance feedback; the CSt group received accurate feedback indicating success or failure in responding fast enough to beat a time limit; the USt group received performance feedback that was unrelated to their response speed and either featured an exaggerated proportion of failure feedback (Experiment 1) or was equated on feedback with the CSt group (Experiment 2). Noise exposure (block 2): the NSt group received no noise exposure; the CSt group was able to learn that short noises were contingent on responding fast enough to beat time limits; the USt group was exposed to non-contingent noises unrelated to response speed or performance feedback, and the amount of short and long noises were equated with the CSt group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3369195&req=5

Figure 1: Stress manipulation: In both Experiments 1 and 2, all groups completed a simple choice-RT task that either was accompanied by psychological stress in the form of performance feedback and noise exposure (controllable stress: CSt group and uncontrollable stress: USt group) or was not accompanied by these forms of stress (no-stress: NSt group). The manipulation consisted of a practice block that was identical across groups, followed by two testing blocks that varied between groups. Performance feedback (blocks 1 and 2): the NSt group received no performance feedback; the CSt group received accurate feedback indicating success or failure in responding fast enough to beat a time limit; the USt group received performance feedback that was unrelated to their response speed and either featured an exaggerated proportion of failure feedback (Experiment 1) or was equated on feedback with the CSt group (Experiment 2). Noise exposure (block 2): the NSt group received no noise exposure; the CSt group was able to learn that short noises were contingent on responding fast enough to beat time limits; the USt group was exposed to non-contingent noises unrelated to response speed or performance feedback, and the amount of short and long noises were equated with the CSt group.
Mentions: Participants performed a choice-RT task and either were (USt and CSt groups) or were not (NSt group) exposed to concurrent psychological stress. The choice-RT task required participants to choose behavioral responses based on perceptual features in the display (Figure 1).

Bottom Line: People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure.These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities.These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology and Neuroscience, University of Colorado at Boulder Boulder, CO, USA.

ABSTRACT
The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop improvement. Once again, this pattern was not demonstrated in the group exposed to uncontrollable events. These results suggest that stress controllability and subjective response interact to affect high-level cognitive abilities. Specifically, exposure to moderate, controllable stress benefits performance, but exposure to uncontrollable stress or having a more extreme response to stress tends to harm performance. These findings may provide insights on how to leverage the beneficial effects of stress in a range of settings.

No MeSH data available.


Related in: MedlinePlus