Limits...
Paediatric multi-detector row chest CT: what you really need to know.

Young C, Xie C, Owens CM - Insights Imaging (2012)

Bottom Line: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail.However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality.Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

View Article: PubMed Central - PubMed

Affiliation: Cardio-thoracic Unit, Great Ormond Street Hospital for Children NHS Trust, London, WC1N, 3JH, UK, carolyn.young16@yahoo.co.uk.

ABSTRACT

Background: The emergence of multi-detector row CT (MDCT) has established and extended the role of CT especially in paediatric chest imaging. This has altered the way in which data is acquired and is perceived as the 'gold standard' in the detection of certain chest pathologies. The range of available post-processing tools provide alternative ways in which CT images can be manipulated for review and interpretation in order to enhance diagnostic accuracy.

Methodology: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail. The use of different post-processing tools to best demonstrate the wide range of important congenital anomalies and thoracic pathologies is outlined and presented pictorially.

Conclusion: MDCT with its isotropic resolution and fast imaging acquisition times reduces the need for invasive diagnostic investigations. However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality. Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

No MeSH data available.


Related in: MedlinePlus

The MaxIP image (a) in a 1-month-old child shows lobar over-inflation with herniation of the lung parenchyma across the midline and also stretching of the left main bronchus. The MinIP image (b) shows generalised reduced pruning and attenuation of lung vessels in the affected lobe. Scanning parameters: 80 kV, 44 eff mAs, 60 ref mAs, 0.65 CTDIvol, 11 DLP
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369117&req=5

Fig6: The MaxIP image (a) in a 1-month-old child shows lobar over-inflation with herniation of the lung parenchyma across the midline and also stretching of the left main bronchus. The MinIP image (b) shows generalised reduced pruning and attenuation of lung vessels in the affected lobe. Scanning parameters: 80 kV, 44 eff mAs, 60 ref mAs, 0.65 CTDIvol, 11 DLP

Mentions: Congenital lobar overinflation (CLO)/emphysema (CLE) is a progressive lobar hyperinflation anomaly due to over-distension of the alveoli and can be associated with either intrinsic/extrinsic bronchial obstruction or defective bronchial wall anatomy and structure. CLO predominantly affects the left upper and right middle lobes (Fig. 6), with patients presenting with respiratory distress due to mass effect/compression on the remaining lung and consequent mediastinal shift from the hyperinflated lobe. CLO initially appears as a soft tissue mass on plain chest radiograph from retention of foetal lung fluid. As the fluid is reabsorbed and replaced by air, lobar hyperinflation results causing a mass effect on the adjacent pulmonary lobe(s). Reduced vascularity within the over-inflated segment and contralateral mediastinal shift is evident on both chest radiograph and MDCT imaging [27].Fig. 6


Paediatric multi-detector row chest CT: what you really need to know.

Young C, Xie C, Owens CM - Insights Imaging (2012)

The MaxIP image (a) in a 1-month-old child shows lobar over-inflation with herniation of the lung parenchyma across the midline and also stretching of the left main bronchus. The MinIP image (b) shows generalised reduced pruning and attenuation of lung vessels in the affected lobe. Scanning parameters: 80 kV, 44 eff mAs, 60 ref mAs, 0.65 CTDIvol, 11 DLP
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369117&req=5

Fig6: The MaxIP image (a) in a 1-month-old child shows lobar over-inflation with herniation of the lung parenchyma across the midline and also stretching of the left main bronchus. The MinIP image (b) shows generalised reduced pruning and attenuation of lung vessels in the affected lobe. Scanning parameters: 80 kV, 44 eff mAs, 60 ref mAs, 0.65 CTDIvol, 11 DLP
Mentions: Congenital lobar overinflation (CLO)/emphysema (CLE) is a progressive lobar hyperinflation anomaly due to over-distension of the alveoli and can be associated with either intrinsic/extrinsic bronchial obstruction or defective bronchial wall anatomy and structure. CLO predominantly affects the left upper and right middle lobes (Fig. 6), with patients presenting with respiratory distress due to mass effect/compression on the remaining lung and consequent mediastinal shift from the hyperinflated lobe. CLO initially appears as a soft tissue mass on plain chest radiograph from retention of foetal lung fluid. As the fluid is reabsorbed and replaced by air, lobar hyperinflation results causing a mass effect on the adjacent pulmonary lobe(s). Reduced vascularity within the over-inflated segment and contralateral mediastinal shift is evident on both chest radiograph and MDCT imaging [27].Fig. 6

Bottom Line: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail.However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality.Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

View Article: PubMed Central - PubMed

Affiliation: Cardio-thoracic Unit, Great Ormond Street Hospital for Children NHS Trust, London, WC1N, 3JH, UK, carolyn.young16@yahoo.co.uk.

ABSTRACT

Background: The emergence of multi-detector row CT (MDCT) has established and extended the role of CT especially in paediatric chest imaging. This has altered the way in which data is acquired and is perceived as the 'gold standard' in the detection of certain chest pathologies. The range of available post-processing tools provide alternative ways in which CT images can be manipulated for review and interpretation in order to enhance diagnostic accuracy.

Methodology: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail. The use of different post-processing tools to best demonstrate the wide range of important congenital anomalies and thoracic pathologies is outlined and presented pictorially.

Conclusion: MDCT with its isotropic resolution and fast imaging acquisition times reduces the need for invasive diagnostic investigations. However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality. Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

No MeSH data available.


Related in: MedlinePlus