Limits...
Paediatric multi-detector row chest CT: what you really need to know.

Young C, Xie C, Owens CM - Insights Imaging (2012)

Bottom Line: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail.However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality.Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

View Article: PubMed Central - PubMed

Affiliation: Cardio-thoracic Unit, Great Ormond Street Hospital for Children NHS Trust, London, WC1N, 3JH, UK, carolyn.young16@yahoo.co.uk.

ABSTRACT

Background: The emergence of multi-detector row CT (MDCT) has established and extended the role of CT especially in paediatric chest imaging. This has altered the way in which data is acquired and is perceived as the 'gold standard' in the detection of certain chest pathologies. The range of available post-processing tools provide alternative ways in which CT images can be manipulated for review and interpretation in order to enhance diagnostic accuracy.

Methodology: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail. The use of different post-processing tools to best demonstrate the wide range of important congenital anomalies and thoracic pathologies is outlined and presented pictorially.

Conclusion: MDCT with its isotropic resolution and fast imaging acquisition times reduces the need for invasive diagnostic investigations. However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality. Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

No MeSH data available.


Related in: MedlinePlus

MaxIP image (a) of a 5-year-old child shows left upper lobe over-inflation with classical pruning of attenuated pulmonary vasculature. A mucoid plug can be seen (arrow) with a proximal bronchcoele in keeping with bronchial atresia (b, c). Scanning parameters: 100 kV, 46 eff mAs, 50 ref mAs, 1.53 CTDIvol, 34 DLP
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3369117&req=5

Fig13: MaxIP image (a) of a 5-year-old child shows left upper lobe over-inflation with classical pruning of attenuated pulmonary vasculature. A mucoid plug can be seen (arrow) with a proximal bronchcoele in keeping with bronchial atresia (b, c). Scanning parameters: 100 kV, 46 eff mAs, 50 ref mAs, 1.53 CTDIvol, 34 DLP

Mentions: Bronchial atresia presents with focal obliteration of a segmental or subsegmental bronchus from mucus impaction with development of a bronchocele (Fig. 13). Air trapping or hyperinflation is seen distal to the stenosis in the affected lung segment [33]. Bronchial atresia commonly affects the apicoposterior segmental bronchus of the left upper lobe, with CT being the imaging modality of choice over plain chest radiograph for visualising the obstruction and the associated segmental hypoattenuation, decreased vascularity, and possible proximal bronchocoele or broncholith [34].Fig. 13


Paediatric multi-detector row chest CT: what you really need to know.

Young C, Xie C, Owens CM - Insights Imaging (2012)

MaxIP image (a) of a 5-year-old child shows left upper lobe over-inflation with classical pruning of attenuated pulmonary vasculature. A mucoid plug can be seen (arrow) with a proximal bronchcoele in keeping with bronchial atresia (b, c). Scanning parameters: 100 kV, 46 eff mAs, 50 ref mAs, 1.53 CTDIvol, 34 DLP
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3369117&req=5

Fig13: MaxIP image (a) of a 5-year-old child shows left upper lobe over-inflation with classical pruning of attenuated pulmonary vasculature. A mucoid plug can be seen (arrow) with a proximal bronchcoele in keeping with bronchial atresia (b, c). Scanning parameters: 100 kV, 46 eff mAs, 50 ref mAs, 1.53 CTDIvol, 34 DLP
Mentions: Bronchial atresia presents with focal obliteration of a segmental or subsegmental bronchus from mucus impaction with development of a bronchocele (Fig. 13). Air trapping or hyperinflation is seen distal to the stenosis in the affected lung segment [33]. Bronchial atresia commonly affects the apicoposterior segmental bronchus of the left upper lobe, with CT being the imaging modality of choice over plain chest radiograph for visualising the obstruction and the associated segmental hypoattenuation, decreased vascularity, and possible proximal bronchocoele or broncholith [34].Fig. 13

Bottom Line: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail.However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality.Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

View Article: PubMed Central - PubMed

Affiliation: Cardio-thoracic Unit, Great Ormond Street Hospital for Children NHS Trust, London, WC1N, 3JH, UK, carolyn.young16@yahoo.co.uk.

ABSTRACT

Background: The emergence of multi-detector row CT (MDCT) has established and extended the role of CT especially in paediatric chest imaging. This has altered the way in which data is acquired and is perceived as the 'gold standard' in the detection of certain chest pathologies. The range of available post-processing tools provide alternative ways in which CT images can be manipulated for review and interpretation in order to enhance diagnostic accuracy.

Methodology: Paediatric imaging technique/protocol together with radiation dose reduction is discussed in detail. The use of different post-processing tools to best demonstrate the wide range of important congenital anomalies and thoracic pathologies is outlined and presented pictorially.

Conclusion: MDCT with its isotropic resolution and fast imaging acquisition times reduces the need for invasive diagnostic investigations. However, users must be vigilant in their imaging techniques to minimise radiation burden, whilst maintaining good image quality. Main Messages • CT examinations should be clinically justified by the referring clinician and radiologist. • MDCT is invaluable for evaluating the central airway, mediastinal structures and lung parenchyma. • MDCT is more sensitive than plain radiographs in detection of structural changes within the lungs.

No MeSH data available.


Related in: MedlinePlus