Limits...
DNA barcoding the native flowering plants and conifers of Wales.

de Vere N, Rich TC, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S, Tatarinova T, Garbett H, Walker K, Wilkinson MJ - PLoS ONE (2012)

Bottom Line: We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences.These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers.Species discrimination can be further improved using spatially explicit sampling.

View Article: PubMed Central - PubMed

Affiliation: National Botanic Garden of Wales, Llanarthne, United Kingdom. natasha.devere@gardenofwales.org.uk

ABSTRACT
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

Show MeSH
Recoverability of the orders of flowering plants and conifers found within Wales using herbarium and fresh material.Recoverability (%) of rbcL and matK across the 34 orders of seed plants found within the Welsh flora. Results are based on 3637 herbarium and 635 freshly collected specimens. White cells denote orders for which fresh specimens were not collected.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368937&req=5

pone-0037945-g002: Recoverability of the orders of flowering plants and conifers found within Wales using herbarium and fresh material.Recoverability (%) of rbcL and matK across the 34 orders of seed plants found within the Welsh flora. Results are based on 3637 herbarium and 635 freshly collected specimens. White cells denote orders for which fresh specimens were not collected.

Mentions: Recoverability varied across the orders of flowering plants and conifers for the two markers and depended on the source material. Freshly collected material had higher levels of success and worked more consistently across all orders (Fig. 2). Some orders were distinctly harder to DNA barcode using herbarium compared to fresh material; Oxalidales, Liliales, Myrtales, Saxifragales and Asparagales had a recoverability of less than 50% for both rbcL and matK when using DNA from herbarium specimens.


DNA barcoding the native flowering plants and conifers of Wales.

de Vere N, Rich TC, Ford CR, Trinder SA, Long C, Moore CW, Satterthwaite D, Davies H, Allainguillaume J, Ronca S, Tatarinova T, Garbett H, Walker K, Wilkinson MJ - PLoS ONE (2012)

Recoverability of the orders of flowering plants and conifers found within Wales using herbarium and fresh material.Recoverability (%) of rbcL and matK across the 34 orders of seed plants found within the Welsh flora. Results are based on 3637 herbarium and 635 freshly collected specimens. White cells denote orders for which fresh specimens were not collected.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368937&req=5

pone-0037945-g002: Recoverability of the orders of flowering plants and conifers found within Wales using herbarium and fresh material.Recoverability (%) of rbcL and matK across the 34 orders of seed plants found within the Welsh flora. Results are based on 3637 herbarium and 635 freshly collected specimens. White cells denote orders for which fresh specimens were not collected.
Mentions: Recoverability varied across the orders of flowering plants and conifers for the two markers and depended on the source material. Freshly collected material had higher levels of success and worked more consistently across all orders (Fig. 2). Some orders were distinctly harder to DNA barcode using herbarium compared to fresh material; Oxalidales, Liliales, Myrtales, Saxifragales and Asparagales had a recoverability of less than 50% for both rbcL and matK when using DNA from herbarium specimens.

Bottom Line: We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences.These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers.Species discrimination can be further improved using spatially explicit sampling.

View Article: PubMed Central - PubMed

Affiliation: National Botanic Garden of Wales, Llanarthne, United Kingdom. natasha.devere@gardenofwales.org.uk

ABSTRACT
We present the first national DNA barcode resource that covers the native flowering plants and conifers for the nation of Wales (1143 species). Using the plant DNA barcode markers rbcL and matK, we have assembled 97.7% coverage for rbcL, 90.2% for matK, and a dual-locus barcode for 89.7% of the native Welsh flora. We have sampled multiple individuals for each species, resulting in 3304 rbcL and 2419 matK sequences. The majority of our samples (85%) are from DNA extracted from herbarium specimens. Recoverability of DNA barcodes is lower using herbarium specimens, compared to freshly collected material, mostly due to lower amplification success, but this is balanced by the increased efficiency of sampling species that have already been collected, identified, and verified by taxonomic experts. The effectiveness of the DNA barcodes for identification (level of discrimination) is assessed using four approaches: the presence of a barcode gap (using pairwise and multiple alignments), formation of monophyletic groups using Neighbour-Joining trees, and sequence similarity in BLASTn searches. These approaches yield similar results, providing relative discrimination levels of 69.4 to 74.9% of all species and 98.6 to 99.8% of genera using both markers. Species discrimination can be further improved using spatially explicit sampling. Mean species discrimination using barcode gap analysis (with a multiple alignment) is 81.6% within 10×10 km squares and 93.3% for 2×2 km squares. Our database of DNA barcodes for Welsh native flowering plants and conifers represents the most complete coverage of any national flora, and offers a valuable platform for a wide range of applications that require accurate species identification.

Show MeSH