Limits...
A fluorescent chromatophore changes the level of fluorescence in a reef fish.

Wucherer MF, Michiels NK - PLoS ONE (2012)

Bottom Line: These cells have a dendritic shape and contain motile fluorescent particles.Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field.The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.

View Article: PubMed Central - PubMed

Affiliation: Animal Evolutionary Ecology, University of Tübingen, Tübingen, Germany. matthias.wucherer@uni-tuebingen.de

ABSTRACT
Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a) absorbance combined with reflection of the incoming light in pigment colors and b) scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several chromatophore types possess motile organelles, which enable rapid changes in coloration. Recently, we described red fluorescence in a number of marine fish and argued that it may be used for private communication in an environment devoid of red. Here, we describe the discovery of a chromatophore in fishes that regulates the distribution of fluorescent pigments in parts of the skin. These cells have a dendritic shape and contain motile fluorescent particles. We show experimentally that the fluorescent particles can be aggregated or dispersed through hormonal and nervous control. This is the first description of a stable and natural cytoskeleton-related fluorescence control mechanism in vertebrate cells. Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field. The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.

Show MeSH
Results of cell manipulation.Bars show results of neuronal and hormonal manipulation in terms of normalized fluorescent area in interradial membranes of E. pellucida before (white bars) and after treatment (shaded bars, respectively). Neuronal K+ stimulation significantly decreased fluorescent area (paired t-test, t = 10.5, df = 5, p<0.005). The Lidocain-treatment effectively inhibited this effect (paired t-test, t = 1.86, df = 4, p>0.13). Neurotransmitter-induced aggregation of fluorosomes (NA) was highly significant (paired t-test, t = 4.67, df = 9, p<0.001). Aggregation induced by MCH was significant (paired t-test, t = 5.19, df = 3, p<0.013) as well as α–MSH significantly induced dispersal in pre-aggregated cells (paired Wilcoxon, Z = 10.5, df = 5, p = 0.03). Bars include standard errors.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368913&req=5

pone-0037913-g006: Results of cell manipulation.Bars show results of neuronal and hormonal manipulation in terms of normalized fluorescent area in interradial membranes of E. pellucida before (white bars) and after treatment (shaded bars, respectively). Neuronal K+ stimulation significantly decreased fluorescent area (paired t-test, t = 10.5, df = 5, p<0.005). The Lidocain-treatment effectively inhibited this effect (paired t-test, t = 1.86, df = 4, p>0.13). Neurotransmitter-induced aggregation of fluorosomes (NA) was highly significant (paired t-test, t = 4.67, df = 9, p<0.001). Aggregation induced by MCH was significant (paired t-test, t = 5.19, df = 3, p<0.013) as well as α–MSH significantly induced dispersal in pre-aggregated cells (paired Wilcoxon, Z = 10.5, df = 5, p = 0.03). Bars include standard errors.

Mentions: In all three types of manipulation, the fluorescent cells have translocated their fluorosomes either towards the nucleus or away from it (Figures 5 and 6). There was a significant reduction of fluorescent area after (neuronal) K+ stimulation (paired t-test, t = 10.5, df = 5, p<0.005). This change was effectively inhibited by the addition of Lidocain to the high K+-solution (paired t-test, t = 1.86, df = 4, p>0.13). The neurotransmitter (NA) treatment also resulted in a highly significant aggregation of fluorosomes (paired t-test, t = 4.67, df = 9, p<0.001).


A fluorescent chromatophore changes the level of fluorescence in a reef fish.

Wucherer MF, Michiels NK - PLoS ONE (2012)

Results of cell manipulation.Bars show results of neuronal and hormonal manipulation in terms of normalized fluorescent area in interradial membranes of E. pellucida before (white bars) and after treatment (shaded bars, respectively). Neuronal K+ stimulation significantly decreased fluorescent area (paired t-test, t = 10.5, df = 5, p<0.005). The Lidocain-treatment effectively inhibited this effect (paired t-test, t = 1.86, df = 4, p>0.13). Neurotransmitter-induced aggregation of fluorosomes (NA) was highly significant (paired t-test, t = 4.67, df = 9, p<0.001). Aggregation induced by MCH was significant (paired t-test, t = 5.19, df = 3, p<0.013) as well as α–MSH significantly induced dispersal in pre-aggregated cells (paired Wilcoxon, Z = 10.5, df = 5, p = 0.03). Bars include standard errors.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368913&req=5

pone-0037913-g006: Results of cell manipulation.Bars show results of neuronal and hormonal manipulation in terms of normalized fluorescent area in interradial membranes of E. pellucida before (white bars) and after treatment (shaded bars, respectively). Neuronal K+ stimulation significantly decreased fluorescent area (paired t-test, t = 10.5, df = 5, p<0.005). The Lidocain-treatment effectively inhibited this effect (paired t-test, t = 1.86, df = 4, p>0.13). Neurotransmitter-induced aggregation of fluorosomes (NA) was highly significant (paired t-test, t = 4.67, df = 9, p<0.001). Aggregation induced by MCH was significant (paired t-test, t = 5.19, df = 3, p<0.013) as well as α–MSH significantly induced dispersal in pre-aggregated cells (paired Wilcoxon, Z = 10.5, df = 5, p = 0.03). Bars include standard errors.
Mentions: In all three types of manipulation, the fluorescent cells have translocated their fluorosomes either towards the nucleus or away from it (Figures 5 and 6). There was a significant reduction of fluorescent area after (neuronal) K+ stimulation (paired t-test, t = 10.5, df = 5, p<0.005). This change was effectively inhibited by the addition of Lidocain to the high K+-solution (paired t-test, t = 1.86, df = 4, p>0.13). The neurotransmitter (NA) treatment also resulted in a highly significant aggregation of fluorosomes (paired t-test, t = 4.67, df = 9, p<0.001).

Bottom Line: These cells have a dendritic shape and contain motile fluorescent particles.Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field.The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.

View Article: PubMed Central - PubMed

Affiliation: Animal Evolutionary Ecology, University of Tübingen, Tübingen, Germany. matthias.wucherer@uni-tuebingen.de

ABSTRACT
Body coloration plays a major role in fish ecology and is predominantly generated using two principles: a) absorbance combined with reflection of the incoming light in pigment colors and b) scatter, refraction, diffraction and interference in structural colors. Poikilotherms, and especially fishes possess several cell types, so-called chromatophores, which employ either of these principles. Together, they generate the dynamic, multi-color patterns used in communication and camouflage. Several chromatophore types possess motile organelles, which enable rapid changes in coloration. Recently, we described red fluorescence in a number of marine fish and argued that it may be used for private communication in an environment devoid of red. Here, we describe the discovery of a chromatophore in fishes that regulates the distribution of fluorescent pigments in parts of the skin. These cells have a dendritic shape and contain motile fluorescent particles. We show experimentally that the fluorescent particles can be aggregated or dispersed through hormonal and nervous control. This is the first description of a stable and natural cytoskeleton-related fluorescence control mechanism in vertebrate cells. Its nervous control supports suggestions that fluorescence could act as a context-dependent signal in some marine fish species and encourages further research in this field. The fluorescent substance is stable under different chemical conditions and shows no discernible bleaching under strong, constant illumination.

Show MeSH