Limits...
Metabolism of 2-chloro-4-nitrophenol in a gram negative bacterium, Burkholderia sp. RKJ 800.

Arora PK, Jain RK - PLoS ONE (2012)

Bottom Line: On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP.Our studies clearly showed that Burkholderia sp.RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway.

View Article: PubMed Central - PubMed

Affiliation: Environmental Biotechnology, Institute of Microbial Technology (CSIR), Chandigarh, India. arora484@gmail.com

ABSTRACT
A 2-chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites.

Show MeSH

Related in: MedlinePlus

Effect of various substrate concentrations and different inoculum sizes on 2C4NP degradation by strain RKJ 800.(a) Effect of various substrate concentrations. (b) Effect of different inoculum sizes.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368897&req=5

pone-0038676-g002: Effect of various substrate concentrations and different inoculum sizes on 2C4NP degradation by strain RKJ 800.(a) Effect of various substrate concentrations. (b) Effect of different inoculum sizes.

Mentions: No degradation was observed when strain RKJ 800 was grown on minimal medium containing 0.5 mM 2C4NP. Degradation was observed when the range of the 2C4NP concentration was from 0.1 mM to 0.4 mM (Fig. 2a). The optimum concentration for degradation of 2C4NP by strain RKJ 800 was determined as 0.3 mM. This concentration was selected for whole study.


Metabolism of 2-chloro-4-nitrophenol in a gram negative bacterium, Burkholderia sp. RKJ 800.

Arora PK, Jain RK - PLoS ONE (2012)

Effect of various substrate concentrations and different inoculum sizes on 2C4NP degradation by strain RKJ 800.(a) Effect of various substrate concentrations. (b) Effect of different inoculum sizes.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368897&req=5

pone-0038676-g002: Effect of various substrate concentrations and different inoculum sizes on 2C4NP degradation by strain RKJ 800.(a) Effect of various substrate concentrations. (b) Effect of different inoculum sizes.
Mentions: No degradation was observed when strain RKJ 800 was grown on minimal medium containing 0.5 mM 2C4NP. Degradation was observed when the range of the 2C4NP concentration was from 0.1 mM to 0.4 mM (Fig. 2a). The optimum concentration for degradation of 2C4NP by strain RKJ 800 was determined as 0.3 mM. This concentration was selected for whole study.

Bottom Line: On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP.Our studies clearly showed that Burkholderia sp.RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway.

View Article: PubMed Central - PubMed

Affiliation: Environmental Biotechnology, Institute of Microbial Technology (CSIR), Chandigarh, India. arora484@gmail.com

ABSTRACT
A 2-chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites.

Show MeSH
Related in: MedlinePlus