Limits...
Altered small-world brain networks in schizophrenia patients during working memory performance.

He H, Sui J, Yu Q, Turner JA, Ho BC, Sponheim SR, Manoach DS, Clark VP, Calhoun VD - PLoS ONE (2012)

Bottom Line: The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads.Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency.These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC.

View Article: PubMed Central - PubMed

Affiliation: The Mind Research Network, Albuquerque, New Mexico, United States of America.

ABSTRACT
Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

Show MeSH

Related in: MedlinePlus

Scatter Plots of averaged clustering coefficients and local efficiency against RT at medium load.Scatter plots with trend lines showing averaged Cnet and Elocal,net as function of reaction time in all subjects and each group. Significant negative correlation (p<0.05) was found between reaction time and averaged Cnet and Elocal,net for all subjects (green line).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368895&req=5

pone-0038195-g008: Scatter Plots of averaged clustering coefficients and local efficiency against RT at medium load.Scatter plots with trend lines showing averaged Cnet and Elocal,net as function of reaction time in all subjects and each group. Significant negative correlation (p<0.05) was found between reaction time and averaged Cnet and Elocal,net for all subjects (green line).

Mentions: Significant negative correlations (p<0.05) were found between reaction time and averaged network measures Cnet and Elocal,net for all subjects at WM load level 3. Patterns are shown in Figure 8. No correlations were found in other WM loads.


Altered small-world brain networks in schizophrenia patients during working memory performance.

He H, Sui J, Yu Q, Turner JA, Ho BC, Sponheim SR, Manoach DS, Clark VP, Calhoun VD - PLoS ONE (2012)

Scatter Plots of averaged clustering coefficients and local efficiency against RT at medium load.Scatter plots with trend lines showing averaged Cnet and Elocal,net as function of reaction time in all subjects and each group. Significant negative correlation (p<0.05) was found between reaction time and averaged Cnet and Elocal,net for all subjects (green line).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368895&req=5

pone-0038195-g008: Scatter Plots of averaged clustering coefficients and local efficiency against RT at medium load.Scatter plots with trend lines showing averaged Cnet and Elocal,net as function of reaction time in all subjects and each group. Significant negative correlation (p<0.05) was found between reaction time and averaged Cnet and Elocal,net for all subjects (green line).
Mentions: Significant negative correlations (p<0.05) were found between reaction time and averaged network measures Cnet and Elocal,net for all subjects at WM load level 3. Patterns are shown in Figure 8. No correlations were found in other WM loads.

Bottom Line: The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads.Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency.These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC.

View Article: PubMed Central - PubMed

Affiliation: The Mind Research Network, Albuquerque, New Mexico, United States of America.

ABSTRACT
Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

Show MeSH
Related in: MedlinePlus