Limits...
From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata.

Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD - PLoS ONE (2012)

Bottom Line: Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered.Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium.We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring.

View Article: PubMed Central - PubMed

Affiliation: Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, Hawai'i, United States of America. jacqueline.padilla.gamino@lifesci.ucsb.edu

ABSTRACT
Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring.

Show MeSH

Related in: MedlinePlus

Symbiodinium sequence networks and folding clusters between parents and eggs.Symbiodinium ITS2 sequences (N = 659 sequences) identified from 64 Montipora capitata coral samples (see Table 1), showing the relationships among the 24 distinct ITS2 sequences retrieved in Symbiodinium clade C, and 5 in Symbiodinium clade D. The pie charts correspond to individual Symbiodinium ITS2 sequences, with the diameter of the pie charts proportional to the number of sequences retrieved corresponding to the circular inset scale (exact numbers given in brackets). Grey and/or black colors correspond to sequences obtained from adult coral colonies and coral eggs, respectively. Networks are subdivided into cluster groupings that each contains sequences with identical secondary structure folding. Details on secondary structures are shown in the Figure S1.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368852&req=5

pone-0038440-g003: Symbiodinium sequence networks and folding clusters between parents and eggs.Symbiodinium ITS2 sequences (N = 659 sequences) identified from 64 Montipora capitata coral samples (see Table 1), showing the relationships among the 24 distinct ITS2 sequences retrieved in Symbiodinium clade C, and 5 in Symbiodinium clade D. The pie charts correspond to individual Symbiodinium ITS2 sequences, with the diameter of the pie charts proportional to the number of sequences retrieved corresponding to the circular inset scale (exact numbers given in brackets). Grey and/or black colors correspond to sequences obtained from adult coral colonies and coral eggs, respectively. Networks are subdivided into cluster groupings that each contains sequences with identical secondary structure folding. Details on secondary structures are shown in the Figure S1.

Mentions: A total of 659 sequences were recovered from the 64 samples (32 adults and their respective eggs), representing 7–13 Symbiodinium ITS2 sequences per sample (10±1.87, average ± SE; Table 1, Fig. 3, GenBank accessions JF683321-JF683339). Our initial screen of sequences resolved 29 different ITS2 sequences that have either been published before, or were retrieved from multiple samples here. 24 of these sequences belonged to Symbiodinium clades C, and 5 to clade D (GenBank accession numbers in Table S1). Nine of the sequences matched previously published sequences (C3, C17, C21, C21.6, C21.11, C31, C31.1, D1, and D1a). The remaining 20 sequences were novel and were assigned names indicating the clade, the number of the most closely related published sequence type, and a decimal and a number to distinguish them from published types and one another [20].


From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata.

Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD - PLoS ONE (2012)

Symbiodinium sequence networks and folding clusters between parents and eggs.Symbiodinium ITS2 sequences (N = 659 sequences) identified from 64 Montipora capitata coral samples (see Table 1), showing the relationships among the 24 distinct ITS2 sequences retrieved in Symbiodinium clade C, and 5 in Symbiodinium clade D. The pie charts correspond to individual Symbiodinium ITS2 sequences, with the diameter of the pie charts proportional to the number of sequences retrieved corresponding to the circular inset scale (exact numbers given in brackets). Grey and/or black colors correspond to sequences obtained from adult coral colonies and coral eggs, respectively. Networks are subdivided into cluster groupings that each contains sequences with identical secondary structure folding. Details on secondary structures are shown in the Figure S1.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368852&req=5

pone-0038440-g003: Symbiodinium sequence networks and folding clusters between parents and eggs.Symbiodinium ITS2 sequences (N = 659 sequences) identified from 64 Montipora capitata coral samples (see Table 1), showing the relationships among the 24 distinct ITS2 sequences retrieved in Symbiodinium clade C, and 5 in Symbiodinium clade D. The pie charts correspond to individual Symbiodinium ITS2 sequences, with the diameter of the pie charts proportional to the number of sequences retrieved corresponding to the circular inset scale (exact numbers given in brackets). Grey and/or black colors correspond to sequences obtained from adult coral colonies and coral eggs, respectively. Networks are subdivided into cluster groupings that each contains sequences with identical secondary structure folding. Details on secondary structures are shown in the Figure S1.
Mentions: A total of 659 sequences were recovered from the 64 samples (32 adults and their respective eggs), representing 7–13 Symbiodinium ITS2 sequences per sample (10±1.87, average ± SE; Table 1, Fig. 3, GenBank accessions JF683321-JF683339). Our initial screen of sequences resolved 29 different ITS2 sequences that have either been published before, or were retrieved from multiple samples here. 24 of these sequences belonged to Symbiodinium clades C, and 5 to clade D (GenBank accession numbers in Table S1). Nine of the sequences matched previously published sequences (C3, C17, C21, C21.6, C21.11, C31, C31.1, D1, and D1a). The remaining 20 sequences were novel and were assigned names indicating the clade, the number of the most closely related published sequence type, and a decimal and a number to distinguish them from published types and one another [20].

Bottom Line: Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered.Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium.We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring.

View Article: PubMed Central - PubMed

Affiliation: Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, Hawai'i, United States of America. jacqueline.padilla.gamino@lifesci.ucsb.edu

ABSTRACT
Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring.

Show MeSH
Related in: MedlinePlus