Limits...
Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system.

Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL - PLoS ONE (2012)

Bottom Line: Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults.In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ) (ex7/8) mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis.Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ) (ex7/8) neonates, and to a greater extent in older animals.

View Article: PubMed Central - PubMed

Affiliation: Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America.

ABSTRACT
Cln3(Δex7/8) mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3(Δex7/8) mice. Homozygous Cln3(Δex7/8) mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10-14 weeks of age. Homozygous Cln3(Δex7/8) mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12-13 week old homozygous Cln3(Δex7/8) mice, which were also seen to a lesser extent in heterozygous Cln3(Δex7/8) mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ) (ex7/8) mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ) (ex7/8) neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3(Δ) (ex7/8) mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3(Δ) (ex7/8) mice that merit further study for JNCL biomarker development.

Show MeSH

Related in: MedlinePlus

Metabolic abnormalities in Cln3Δex7/8 mice. (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) Cln3Δex7/8 mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368842&req=5

pone-0038310-g003: Metabolic abnormalities in Cln3Δex7/8 mice. (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) Cln3Δex7/8 mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).

Mentions: To monitor overall health in young adult Cln3Δex7/8 mice on the C57BL/6N background, body weight between 10 and 20 weeks of age was monitored for wild-type, heterozygous, and homozygous Cln3Δex7/8 mice maintained on a normal diet (5% crude fat); genotype had no significant effect on body weight (Fig. 3A). To further assess overall energy metabolism, 13-week-old male and 14-week-old female mice, were monitored by indirect calorimetry for a 21-hour period, during a 12-hour light-dark cycle (see Methods). Cln3Δex7/8 mutant mice did not display differences in activity, food consumption, or mean respiratory exchange ratio (Table S2). However, rectal body temperature, measured late-morning at the end of the testing period when mice were at rest, and minimum oxygen consumption were significantly elevated in heterozygous and homozygous Cln3Δex7/8 mice (Fig. 3B, C).


Large-scale phenotyping of an accurate genetic mouse model of JNCL identifies novel early pathology outside the central nervous system.

Staropoli JF, Haliw L, Biswas S, Garrett L, Hölter SM, Becker L, Skosyrski S, Da Silva-Buttkus P, Calzada-Wack J, Neff F, Rathkolb B, Rozman J, Schrewe A, Adler T, Puk O, Sun M, Favor J, Racz I, Bekeredjian R, Busch DH, Graw J, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Lopez E, Harati H, Hill E, Krause DS, Guide J, Dragileva E, Gale E, Wheeler VC, Boustany RM, Brown DE, Breton S, Ruether K, Gailus-Durner V, Fuchs H, de Angelis MH, Cotman SL - PLoS ONE (2012)

Metabolic abnormalities in Cln3Δex7/8 mice. (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) Cln3Δex7/8 mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368842&req=5

pone-0038310-g003: Metabolic abnormalities in Cln3Δex7/8 mice. (A) Graphs depicting female (left) and male (right) mean body weight data from wild-type (diamonds), heterozygous (squares), and homozygous (triangles) Cln3Δex7/8 mice at ages between 11 and 20-weeks are shown (n = 5–10 mice per genotype/sex/age). No significant genotypic differences were observed. Error bars represent SEM. (B) Mean ± SEM rectal body temperatures are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Rectal body temperatures, which were measured at rest, were slightly elevated in male and female, heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type). (C) Mean ± SEM values for minimum oxygen consumption (ml/hr) are shown for male (black bars) and female (gray bars) wild-type (Cln3+/+), heterozygous (Cln3+/Δex7/8) and homozygous (Cln3Δex7/8/Δex7/8) littermate mice are shown. Minimum oxygen consumption was elevated in male and female heterozygous and homozygous Cln3Δex7/8 mice, compared to wild-type mice. 5–10 mice per group (genotype/sex) were analyzed. *, p<0.001 (heterozygous versus wild-type, homozygous versus wild-type).
Mentions: To monitor overall health in young adult Cln3Δex7/8 mice on the C57BL/6N background, body weight between 10 and 20 weeks of age was monitored for wild-type, heterozygous, and homozygous Cln3Δex7/8 mice maintained on a normal diet (5% crude fat); genotype had no significant effect on body weight (Fig. 3A). To further assess overall energy metabolism, 13-week-old male and 14-week-old female mice, were monitored by indirect calorimetry for a 21-hour period, during a 12-hour light-dark cycle (see Methods). Cln3Δex7/8 mutant mice did not display differences in activity, food consumption, or mean respiratory exchange ratio (Table S2). However, rectal body temperature, measured late-morning at the end of the testing period when mice were at rest, and minimum oxygen consumption were significantly elevated in heterozygous and homozygous Cln3Δex7/8 mice (Fig. 3B, C).

Bottom Line: Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults.In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ) (ex7/8) mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis.Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ) (ex7/8) neonates, and to a greater extent in older animals.

View Article: PubMed Central - PubMed

Affiliation: Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America.

ABSTRACT
Cln3(Δex7/8) mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3(Δex7/8) mice. Homozygous Cln3(Δex7/8) mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10-14 weeks of age. Homozygous Cln3(Δex7/8) mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12-13 week old homozygous Cln3(Δex7/8) mice, which were also seen to a lesser extent in heterozygous Cln3(Δex7/8) mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ) (ex7/8) mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ) (ex7/8) neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3(Δ) (ex7/8) mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3(Δ) (ex7/8) mice that merit further study for JNCL biomarker development.

Show MeSH
Related in: MedlinePlus