Limits...
Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.

Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S - BMC Genomics (2012)

Bottom Line: These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle.Other genes play a role in flavonoid biosynthesis and hormonal metabolism.The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy.

ABSTRACT

Background: Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far.

Results: A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism.

Conclusions: The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.

Show MeSH

Related in: MedlinePlus

Root apparatus of tomato plants grown under different Fe-supply condition. Detail of root apparatus of A) Fe-deficient and B) Fe-sufficient plants.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368770&req=5

Figure 2: Root apparatus of tomato plants grown under different Fe-supply condition. Detail of root apparatus of A) Fe-deficient and B) Fe-sufficient plants.

Mentions: Typical responses of Fe-deficiency [22] were observed in tomato plants grown for 14 d in the presence of a low amount of Fe and thereafter subjected to 7 d of Fe deprivation. The chlorophyll content (SPAD index value) was reduced in Fe-deficient plants (Table 1). A concomitant increase in root FeIII-chelate reductase activity (Table 1) was also observed with values similar to those commonly found in roots of Fe-deficient tomato plants [23]. Furthermore, Fe-deprived tomato plants developed more lateral roots and showed an abundant production of root-hairs (Figures 1 and 2).


Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency.

Zamboni A, Zanin L, Tomasi N, Pezzotti M, Pinton R, Varanini Z, Cesco S - BMC Genomics (2012)

Root apparatus of tomato plants grown under different Fe-supply condition. Detail of root apparatus of A) Fe-deficient and B) Fe-sufficient plants.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368770&req=5

Figure 2: Root apparatus of tomato plants grown under different Fe-supply condition. Detail of root apparatus of A) Fe-deficient and B) Fe-sufficient plants.
Mentions: Typical responses of Fe-deficiency [22] were observed in tomato plants grown for 14 d in the presence of a low amount of Fe and thereafter subjected to 7 d of Fe deprivation. The chlorophyll content (SPAD index value) was reduced in Fe-deficient plants (Table 1). A concomitant increase in root FeIII-chelate reductase activity (Table 1) was also observed with values similar to those commonly found in roots of Fe-deficient tomato plants [23]. Furthermore, Fe-deprived tomato plants developed more lateral roots and showed an abundant production of root-hairs (Figures 1 and 2).

Bottom Line: These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle.Other genes play a role in flavonoid biosynthesis and hormonal metabolism.The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Biotechnology, University of Verona, via delle Grazie 15, 37134 Verona, Italy.

ABSTRACT

Background: Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far.

Results: A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism.

Conclusions: The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.

Show MeSH
Related in: MedlinePlus