Limits...
Vapor phase mediated cellular uptake of sub 5 nm nanoparticles.

Serdiuk T, Lysenko V, Skryshevsky VA, Géloën A - Nanoscale Res Lett (2012)

Bottom Line: Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open.Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase.However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Lyon, Nanotechnology Institute of Lyon (INL), UMR-5270, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées de Lyon, Villeurbanne, F-69621, France. tetiana.serdiuk@gmail.com.

ABSTRACT
Nanoparticles became an important and wide-used tool for cell imaging because of their unique optical properties. Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open. Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase. Natural gradual size-tuning of NPs in dependence to the distance from the NP liquid source allows progressive shift of the fluorescence color of labeled cells in the blue region according to the increase of the distance from the NP suspension. This effect may be used for the soft vapor labeling of biological cells with the possibility of controlling the color of fluorescence. However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples.

No MeSH data available.


Related in: MedlinePlus

Relationship between the integrated luminosity per one cell and vertical distance from the NP source. Dependence of the integrated luminosity per one cell on the vertical distance between the cell holder and the suspension surface for two cases: open and confined air. Three inserted black-and-white fluorescent pictures illustrate some experimental points.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368743&req=5

Figure 2: Relationship between the integrated luminosity per one cell and vertical distance from the NP source. Dependence of the integrated luminosity per one cell on the vertical distance between the cell holder and the suspension surface for two cases: open and confined air. Three inserted black-and-white fluorescent pictures illustrate some experimental points.

Mentions: Figure 2 illustrates the relationship between the integrated luminosity per one cell and vertical distance from the cell holder to the suspension surface (see relationship between the integrated luminosity per one cell and horizontal distance from the NP source in Figure S1 in Additional file 1). The higher the holder position is, the weaker the cell fluorescence intensity obtained, suggesting that the number of the NPs reaching the onion peels decreases significantly with the distance between onion cells and the colloidal suspension of NPs. Three inserted pictures of fluorescence give a qualitative representation of the fluorescence intensity reduction according to the distance of the onion cells to the colloidal suspension of NPs. In addition, the curve representing the fluorescence of onion cells in function to the distance is nonlinear for both open and confined air. Obviously, cell luminosity is generally higher in the case of confined air through all the range of height values.


Vapor phase mediated cellular uptake of sub 5 nm nanoparticles.

Serdiuk T, Lysenko V, Skryshevsky VA, Géloën A - Nanoscale Res Lett (2012)

Relationship between the integrated luminosity per one cell and vertical distance from the NP source. Dependence of the integrated luminosity per one cell on the vertical distance between the cell holder and the suspension surface for two cases: open and confined air. Three inserted black-and-white fluorescent pictures illustrate some experimental points.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368743&req=5

Figure 2: Relationship between the integrated luminosity per one cell and vertical distance from the NP source. Dependence of the integrated luminosity per one cell on the vertical distance between the cell holder and the suspension surface for two cases: open and confined air. Three inserted black-and-white fluorescent pictures illustrate some experimental points.
Mentions: Figure 2 illustrates the relationship between the integrated luminosity per one cell and vertical distance from the cell holder to the suspension surface (see relationship between the integrated luminosity per one cell and horizontal distance from the NP source in Figure S1 in Additional file 1). The higher the holder position is, the weaker the cell fluorescence intensity obtained, suggesting that the number of the NPs reaching the onion peels decreases significantly with the distance between onion cells and the colloidal suspension of NPs. Three inserted pictures of fluorescence give a qualitative representation of the fluorescence intensity reduction according to the distance of the onion cells to the colloidal suspension of NPs. In addition, the curve representing the fluorescence of onion cells in function to the distance is nonlinear for both open and confined air. Obviously, cell luminosity is generally higher in the case of confined air through all the range of height values.

Bottom Line: Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open.Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase.However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples.

View Article: PubMed Central - HTML - PubMed

Affiliation: University of Lyon, Nanotechnology Institute of Lyon (INL), UMR-5270, Centre National de la Recherche Scientifique, Institut National des Sciences Appliquées de Lyon, Villeurbanne, F-69621, France. tetiana.serdiuk@gmail.com.

ABSTRACT
Nanoparticles became an important and wide-used tool for cell imaging because of their unique optical properties. Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open. Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase. Natural gradual size-tuning of NPs in dependence to the distance from the NP liquid source allows progressive shift of the fluorescence color of labeled cells in the blue region according to the increase of the distance from the NP suspension. This effect may be used for the soft vapor labeling of biological cells with the possibility of controlling the color of fluorescence. However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples.

No MeSH data available.


Related in: MedlinePlus