Limits...
Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus

The viable cell counts of fungal cells. The viable cell counts of fungal cells adhered and embedded in biofilms formed on the catheter surface (control versus coated catheters).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368737&req=5

Figure 3: The viable cell counts of fungal cells. The viable cell counts of fungal cells adhered and embedded in biofilms formed on the catheter surface (control versus coated catheters).

Mentions: The antibiofilm effect of the tested nanobiosystem was also proved by the significant reduction of viable cell number in the presence of the protective pellicle of the hybrid nanobiosystem. In the case of C. albicans biofilms, although a slight reduction was observed in the early phase of biofilm development (at 24 h), a clear inhibitory effect was observed in the case of 48- and 72-h biofilms, the VCCs drastically dropping with approximately 85% to 98%, as compared to the uncoated controls (Figure 3). Comparatively, in case of C. tropicalis biofilm, the most intensive decrease of viable cells adhered to the catheter sections was observed at 24 h (Figure 3). These results could be probably related to the earlier production of pseudohyphae and germ tubes by C. tropicalis (48 h) as compared with C. albicans (72 h). These structures could represent additional contact and adherence points to inert or cellular substrata and also sources of genetic variability and adaptation to different limitative conditions, being responsible, for example, for the high tolerance to antifungal substances [26].


Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

The viable cell counts of fungal cells. The viable cell counts of fungal cells adhered and embedded in biofilms formed on the catheter surface (control versus coated catheters).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368737&req=5

Figure 3: The viable cell counts of fungal cells. The viable cell counts of fungal cells adhered and embedded in biofilms formed on the catheter surface (control versus coated catheters).
Mentions: The antibiofilm effect of the tested nanobiosystem was also proved by the significant reduction of viable cell number in the presence of the protective pellicle of the hybrid nanobiosystem. In the case of C. albicans biofilms, although a slight reduction was observed in the early phase of biofilm development (at 24 h), a clear inhibitory effect was observed in the case of 48- and 72-h biofilms, the VCCs drastically dropping with approximately 85% to 98%, as compared to the uncoated controls (Figure 3). Comparatively, in case of C. tropicalis biofilm, the most intensive decrease of viable cells adhered to the catheter sections was observed at 24 h (Figure 3). These results could be probably related to the earlier production of pseudohyphae and germ tubes by C. tropicalis (48 h) as compared with C. albicans (72 h). These structures could represent additional contact and adherence points to inert or cellular substrata and also sources of genetic variability and adaptation to different limitative conditions, being responsible, for example, for the high tolerance to antifungal substances [26].

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus