Limits...
Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus

CLSM images. (A) adherent C. albicans strain at 48 h; (B) the absence of adherent yeast -cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (C) adherent C. albicans strain at 72 h; (D) the absence of adherent yeast-cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (E) adherent C. tropicalis strain at 48 h; (F) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h; (G) adherent C. tropicalis strain at 72 h; and (H) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368737&req=5

Figure 2: CLSM images. (A) adherent C. albicans strain at 48 h; (B) the absence of adherent yeast -cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (C) adherent C. albicans strain at 72 h; (D) the absence of adherent yeast-cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (E) adherent C. tropicalis strain at 48 h; (F) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h; (G) adherent C. tropicalis strain at 72 h; and (H) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h.

Mentions: Although C. albicans is the predominant etiologic agent of candidiasis, other Candida species that tend to be less susceptible to the commonly used antifungal drugs such as C. krusei, C. glabrata, C. lusitaniae, and the newest Candida species, C dubliniensis, have emerged as substantial opportunistic pathogens [25]. The outlined work investigates the potential of R. officinalis essential oil stabilized in nanolayer and its effect on biofilm formation of C. albicans and C. tropicalis strains, previously isolated from clinical samples. Confocal laser scanning microscopy (CLSM) was used for the analysis of fungal biofilms developed on the uncoated catheters and on the catheters pelliculised with the plant oils included in the nanosystem. Visualization of control biofilms revealed the ability of the tested strains to form biofilms on the glass coverlisps. The visualization of fungal biofilms developed at 48 h revealed the presence of yeast-phase cells attached to the inert substratum and the microcolony yeast basal layer formation, as well as the expansion of the biofilm architecture by the occurrence of hyphal and pseudohyphal forms, that diminished at 72 h (Figure 2). Visualization of the biofilm structure in the presence of the tested hybrid nanosystem revealed an important reduction in adhering cells and biofilm development as compared to the untreated biofilm, the adhered yeast-cells being practically absent at 48 and 72 h for both tested strains (Figure 2). This suggests that despite the relative minimal diffusion due to the inclusion of the essential oil in the nanoparticles layer, the vegetal compounds may be exerting a metabolic interference in biofilm.


Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

CLSM images. (A) adherent C. albicans strain at 48 h; (B) the absence of adherent yeast -cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (C) adherent C. albicans strain at 72 h; (D) the absence of adherent yeast-cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (E) adherent C. tropicalis strain at 48 h; (F) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h; (G) adherent C. tropicalis strain at 72 h; and (H) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368737&req=5

Figure 2: CLSM images. (A) adherent C. albicans strain at 48 h; (B) the absence of adherent yeast -cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (C) adherent C. albicans strain at 72 h; (D) the absence of adherent yeast-cells and C. albicans biofilm development in the presence of hybrid nanobiosystem at 72 h; (E) adherent C. tropicalis strain at 48 h; (F) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h; (G) adherent C. tropicalis strain at 72 h; and (H) the rare presence of adherent yeast-cells and C. tropicalis biofilm development in the presence of hybrid nanobiosystem at 72 h.
Mentions: Although C. albicans is the predominant etiologic agent of candidiasis, other Candida species that tend to be less susceptible to the commonly used antifungal drugs such as C. krusei, C. glabrata, C. lusitaniae, and the newest Candida species, C dubliniensis, have emerged as substantial opportunistic pathogens [25]. The outlined work investigates the potential of R. officinalis essential oil stabilized in nanolayer and its effect on biofilm formation of C. albicans and C. tropicalis strains, previously isolated from clinical samples. Confocal laser scanning microscopy (CLSM) was used for the analysis of fungal biofilms developed on the uncoated catheters and on the catheters pelliculised with the plant oils included in the nanosystem. Visualization of control biofilms revealed the ability of the tested strains to form biofilms on the glass coverlisps. The visualization of fungal biofilms developed at 48 h revealed the presence of yeast-phase cells attached to the inert substratum and the microcolony yeast basal layer formation, as well as the expansion of the biofilm architecture by the occurrence of hyphal and pseudohyphal forms, that diminished at 72 h (Figure 2). Visualization of the biofilm structure in the presence of the tested hybrid nanosystem revealed an important reduction in adhering cells and biofilm development as compared to the untreated biofilm, the adhered yeast-cells being practically absent at 48 and 72 h for both tested strains (Figure 2). This suggests that despite the relative minimal diffusion due to the inclusion of the essential oil in the nanoparticles layer, the vegetal compounds may be exerting a metabolic interference in biofilm.

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus