Limits...
Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus

Core/shell/coated-shell nanobiosystem (transversal section).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368737&req=5

Figure 1: Core/shell/coated-shell nanobiosystem (transversal section).

Mentions: Functionalized magnetite nanoparticles had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. High resolution transmission electron microscopy was used as a primary characterization method for Fe3O4/oleic acid- core/shell nanostructure with dimensions not exceeding 20 nm, according to our previous studies [15,16]. The nanobiosystem was obtained by coating the prosthetic device with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3 0.33% (w/v)). The layer of core/shell nanostructure on prosthetic device was achieved by submerging the catheter pieces in 5 ml of the nanofluid represented by Fe3O4/oleic acid:CHCl3 0,33% (w/v). The nanoparticles were aligned in a magnetic field of 100 Kgf applied for 1 s, and thereafter, the catheter pieces have been extemporaneously dried at room temperature. The rapid drying was facilitated by the convenient volatility of chloroform. In order to achieve core/shell/coated-shell type samples, the extra-shell (CHCl3 diluted essential oil, 160 μL/mL) was applied by adsorption in a secondary covering treatment, performed by submerging again for 1 s the catheter samples previously coated with Fe 3O4/oleic acid in 5 ml of CHCl3 diluted essential oil, followed by extemporaneous drying at room temperature (Figure 1). The coated prosthetic devices were then sterilized by ultraviolet irradiation for 15 min.


Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity.

Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazăr V, Andronescu E - Nanoscale Res Lett (2012)

Core/shell/coated-shell nanobiosystem (transversal section).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368737&req=5

Figure 1: Core/shell/coated-shell nanobiosystem (transversal section).
Mentions: Functionalized magnetite nanoparticles had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. High resolution transmission electron microscopy was used as a primary characterization method for Fe3O4/oleic acid- core/shell nanostructure with dimensions not exceeding 20 nm, according to our previous studies [15,16]. The nanobiosystem was obtained by coating the prosthetic device with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3 0.33% (w/v)). The layer of core/shell nanostructure on prosthetic device was achieved by submerging the catheter pieces in 5 ml of the nanofluid represented by Fe3O4/oleic acid:CHCl3 0,33% (w/v). The nanoparticles were aligned in a magnetic field of 100 Kgf applied for 1 s, and thereafter, the catheter pieces have been extemporaneously dried at room temperature. The rapid drying was facilitated by the convenient volatility of chloroform. In order to achieve core/shell/coated-shell type samples, the extra-shell (CHCl3 diluted essential oil, 160 μL/mL) was applied by adsorption in a secondary covering treatment, performed by submerging again for 1 s the catheter samples previously coated with Fe 3O4/oleic acid in 5 ml of CHCl3 diluted essential oil, followed by extemporaneous drying at room temperature (Figure 1). The coated prosthetic devices were then sterilized by ultraviolet irradiation for 15 min.

Bottom Line: Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy.The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination.Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Applied Chemistry and Materials Science, Politechnica University of Bucharest, Bucharest, Romania. grumezescu@yahoo.com.

ABSTRACT
Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of Candida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the biomedical field, opening new directions for the design of film-coated surfaces with antibiofilm properties.

No MeSH data available.


Related in: MedlinePlus