Limits...
Complete genome sequence of Desulfurispirillum indicum strain S5(T).

Bini E, Rauschenbach I, Narasingarao P, Starovoytov V, Hauser L, Jeffries CD, Land M, Bruce D, Detter C, Goodwin L, Han S, Held B, Tapia R, Copeland A, Ivanova N, Mikhailova N, Nolan M, Pati A, Pennacchio L, Pitluck S, Woyke T, Häggblom M - Stand Genomic Sci (2011)

Bottom Line: D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species.Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors.The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

View Article: PubMed Central - PubMed

ABSTRACT
Desulfurispirillum indicum strain S5(T) is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

No MeSH data available.


Related in: MedlinePlus

Transmission electron micrograph of D. indicum S5T.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368425&req=5

f2: Transmission electron micrograph of D. indicum S5T.

Mentions: D. indicum forms a deeply branching clade related to Chrysiogenes arsenatis, an arsenate respiring bacterium that cannot use selenate as electron acceptor, and Desulfurispira natronophila that only uses sulfur or arsenate as terminal electron acceptor (Table 1). Interestingly, its closest relative D. alkaliphilum, with a 16S rRNA gene identity of 99.8%, is not capable of either arsenate or selenate respiration. The phylogenetic position of D. indicum relative to its closest relatives is shown in Figure 1. This Gram-negative bacterium is spiral-shaped and accumulates electron-dense granules when grown in the presence of selenium (Figure 2).


Complete genome sequence of Desulfurispirillum indicum strain S5(T).

Bini E, Rauschenbach I, Narasingarao P, Starovoytov V, Hauser L, Jeffries CD, Land M, Bruce D, Detter C, Goodwin L, Han S, Held B, Tapia R, Copeland A, Ivanova N, Mikhailova N, Nolan M, Pati A, Pennacchio L, Pitluck S, Woyke T, Häggblom M - Stand Genomic Sci (2011)

Transmission electron micrograph of D. indicum S5T.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368425&req=5

f2: Transmission electron micrograph of D. indicum S5T.
Mentions: D. indicum forms a deeply branching clade related to Chrysiogenes arsenatis, an arsenate respiring bacterium that cannot use selenate as electron acceptor, and Desulfurispira natronophila that only uses sulfur or arsenate as terminal electron acceptor (Table 1). Interestingly, its closest relative D. alkaliphilum, with a 16S rRNA gene identity of 99.8%, is not capable of either arsenate or selenate respiration. The phylogenetic position of D. indicum relative to its closest relatives is shown in Figure 1. This Gram-negative bacterium is spiral-shaped and accumulates electron-dense granules when grown in the presence of selenium (Figure 2).

Bottom Line: D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species.Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors.The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

View Article: PubMed Central - PubMed

ABSTRACT
Desulfurispirillum indicum strain S5(T) is a strictly anaerobic bacterium isolated from river sediment in Chennai, India. D. indicum belongs to the deep branching phylum of Chrysiogenetes, which currently only includes three other cultured species. Strain S5(T) is the type strain of the species and it is capable of growth using selenate, selenite, arsenate, nitrate or nitrite as terminal electron acceptors. The 2,928,377 bp genome encodes 2,619 proteins and 49 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of arsenic and selenium, in addition to deepening our knowledge of the underrepresented phylum of Chrysiogenetes.

No MeSH data available.


Related in: MedlinePlus