Limits...
Complete genome sequence of Paenibacillus sp. strain JDR-2.

Chow V, Nong G, St John FJ, Rice JD, Dickstein E, Chertkov O, Bruce D, Detter C, Brettin T, Han J, Woyke T, Pitluck S, Nolan M, Pati A, Martin J, Copeland A, Land ML, Goodwin L, Jones JB, Ingram LO, Shanmugam KT, Preston JF - Stand Genomic Sci (2012)

Bottom Line: The genome of Paenibacillus sp.Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism.The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

View Article: PubMed Central - PubMed

ABSTRACT
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

No MeSH data available.


Related in: MedlinePlus

Scanning electron micrographs of Paenibacillus sp. JDR-2. Panel (a) is representative of the bacilli harvested in the vegetative state and panel (b) indicates individuals with expanded midsections which are entering the sporulation phase. Pjdr2 cells were grown in Luria Broth and harvested by centrifugation at the exponential growth phase (a) and post exponential phase (b), the pellets washed with water 3 times and prepared for scanning electron microscopy by the Electron Microscopy and Bio-Imaging laboratory, ICBR of the University of Florida.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368403&req=5

f2: Scanning electron micrographs of Paenibacillus sp. JDR-2. Panel (a) is representative of the bacilli harvested in the vegetative state and panel (b) indicates individuals with expanded midsections which are entering the sporulation phase. Pjdr2 cells were grown in Luria Broth and harvested by centrifugation at the exponential growth phase (a) and post exponential phase (b), the pellets washed with water 3 times and prepared for scanning electron microscopy by the Electron Microscopy and Bio-Imaging laboratory, ICBR of the University of Florida.

Mentions: When grown on oat spelt xylan agar plates [2], colonies of strain Pjdr2 are white with smooth edges, surrounded by clearing zones resulting from the depolymerization of the xylan. This property was routinely used to monitor the purity of Pjdr2 cultures. As shown in Figure 2, cells of Pjdr2 are rod shaped, with swellings suggestive of sporulation. The properties evaluated for classification allows assignment as an endospore-forming bacterium in the phylum Firmicutes and genus Paenibacillus as noted in Table 1.


Complete genome sequence of Paenibacillus sp. strain JDR-2.

Chow V, Nong G, St John FJ, Rice JD, Dickstein E, Chertkov O, Bruce D, Detter C, Brettin T, Han J, Woyke T, Pitluck S, Nolan M, Pati A, Martin J, Copeland A, Land ML, Goodwin L, Jones JB, Ingram LO, Shanmugam KT, Preston JF - Stand Genomic Sci (2012)

Scanning electron micrographs of Paenibacillus sp. JDR-2. Panel (a) is representative of the bacilli harvested in the vegetative state and panel (b) indicates individuals with expanded midsections which are entering the sporulation phase. Pjdr2 cells were grown in Luria Broth and harvested by centrifugation at the exponential growth phase (a) and post exponential phase (b), the pellets washed with water 3 times and prepared for scanning electron microscopy by the Electron Microscopy and Bio-Imaging laboratory, ICBR of the University of Florida.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368403&req=5

f2: Scanning electron micrographs of Paenibacillus sp. JDR-2. Panel (a) is representative of the bacilli harvested in the vegetative state and panel (b) indicates individuals with expanded midsections which are entering the sporulation phase. Pjdr2 cells were grown in Luria Broth and harvested by centrifugation at the exponential growth phase (a) and post exponential phase (b), the pellets washed with water 3 times and prepared for scanning electron microscopy by the Electron Microscopy and Bio-Imaging laboratory, ICBR of the University of Florida.
Mentions: When grown on oat spelt xylan agar plates [2], colonies of strain Pjdr2 are white with smooth edges, surrounded by clearing zones resulting from the depolymerization of the xylan. This property was routinely used to monitor the purity of Pjdr2 cultures. As shown in Figure 2, cells of Pjdr2 are rod shaped, with swellings suggestive of sporulation. The properties evaluated for classification allows assignment as an endospore-forming bacterium in the phylum Firmicutes and genus Paenibacillus as noted in Table 1.

Bottom Line: The genome of Paenibacillus sp.Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism.The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

View Article: PubMed Central - PubMed

ABSTRACT
Paenibacillus sp. strain JDR-2, an aggressively xylanolytic bacterium isolated from sweetgum (Liquidambar styraciflua) wood, is able to efficiently depolymerize, assimilate and metabolize 4-O-methylglucuronoxylan, the predominant structural component of hardwood hemicelluloses. A basis for this capability was first supported by the identification of genes and characterization of encoded enzymes and has been further defined by the sequencing and annotation of the complete genome, which we describe. In addition to genes implicated in the utilization of β-1,4-xylan, genes have also been identified for the utilization of other hemicellulosic polysaccharides. The genome of Paenibacillus sp. JDR-2 contains 7,184,930 bp in a single replicon with 6,288 protein-coding and 122 RNA genes. Uniquely prominent are 874 genes encoding proteins involved in carbohydrate transport and metabolism. The prevalence and organization of these genes support a metabolic potential for bioprocessing of hemicellulose fractions derived from lignocellulosic resources.

No MeSH data available.


Related in: MedlinePlus