Limits...
Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)).

Han C, Kotsyurbenko O, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC - Stand Genomic Sci (2012)

Bottom Line: Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria.The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors.Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources.

View Article: PubMed Central - PubMed

ABSTRACT
Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

No MeSH data available.


Related in: MedlinePlus

Scanning electron micrograph of S. kujiense YK-1T
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368400&req=5

f2: Scanning electron micrograph of S. kujiense YK-1T

Mentions: The cells of strain YK-1T are curved rods of 0.4 × 1-2 µm length (Figure 2) [1]. Spiral cells are also observed in the exponential growth phase [1]. S. kujiense cells stain Gram-negative and non spore-forming (Table 1). The organism is described as motile with one polar flagellum (not visible in Figure 2). Motility-related genes account for 5.3% of total genes in the genome (COG category N). The organism is a facultatively anaerobic chemolithoautotroph [1,3]. S. kujiense can grow only under NaCl concentrations below 1% [1,3]. A low-ion-strength medium (MBM) has been developed for growing S. kujiense [1,3]. The organism also grows in solid medium containing 1.5% Bacto-agar [1,3]. The temperature range for growth is between 10°C and 35°C, with an optimum at 25°C [1,3]. The pH range for growth is 6.0-8.0, with an optimum at pH 7.0 [1,3]. S. kujiense grows autotrophically on carbon dioxide and bicarbonate [1,3]. The organism does not utilize organic acids such as acetate, lactate, pyruvate, malate, succinate, or formate nor does it utilize methanol, glucose or glutamate [1,3]. S. kujiense is not able to ferment phenol, octane, toluene, benzene, benzoate or ascorbate [1,3]. S. kujiense uses sulfide, elemental sulfur, thiosulfate and hydrogen as electron donors, and nitrate as well as small amounts of molecular oxygen (1% in gas phase) as electron acceptors [1,3]. It does not utilize nitrite [1,3]. S. kujiense shows oxidase activity, but is catalase-negative [1,3]. The organism is of ecological interest because of its ability to utilize different sulfur species and nitrate [1,3].


Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)).

Han C, Kotsyurbenko O, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC - Stand Genomic Sci (2012)

Scanning electron micrograph of S. kujiense YK-1T
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368400&req=5

f2: Scanning electron micrograph of S. kujiense YK-1T
Mentions: The cells of strain YK-1T are curved rods of 0.4 × 1-2 µm length (Figure 2) [1]. Spiral cells are also observed in the exponential growth phase [1]. S. kujiense cells stain Gram-negative and non spore-forming (Table 1). The organism is described as motile with one polar flagellum (not visible in Figure 2). Motility-related genes account for 5.3% of total genes in the genome (COG category N). The organism is a facultatively anaerobic chemolithoautotroph [1,3]. S. kujiense can grow only under NaCl concentrations below 1% [1,3]. A low-ion-strength medium (MBM) has been developed for growing S. kujiense [1,3]. The organism also grows in solid medium containing 1.5% Bacto-agar [1,3]. The temperature range for growth is between 10°C and 35°C, with an optimum at 25°C [1,3]. The pH range for growth is 6.0-8.0, with an optimum at pH 7.0 [1,3]. S. kujiense grows autotrophically on carbon dioxide and bicarbonate [1,3]. The organism does not utilize organic acids such as acetate, lactate, pyruvate, malate, succinate, or formate nor does it utilize methanol, glucose or glutamate [1,3]. S. kujiense is not able to ferment phenol, octane, toluene, benzene, benzoate or ascorbate [1,3]. S. kujiense uses sulfide, elemental sulfur, thiosulfate and hydrogen as electron donors, and nitrate as well as small amounts of molecular oxygen (1% in gas phase) as electron acceptors [1,3]. It does not utilize nitrite [1,3]. S. kujiense shows oxidase activity, but is catalase-negative [1,3]. The organism is of ecological interest because of its ability to utilize different sulfur species and nitrate [1,3].

Bottom Line: Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria.The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors.Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources.

View Article: PubMed Central - PubMed

ABSTRACT
Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

No MeSH data available.


Related in: MedlinePlus