Limits...
Draft genome sequence of Arthrospira platensis C1 (PCC9438).

Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S, Tabata S, Kaneko T, Chaijaruwanich J, Sangsrakru D, Tangphatsornruang S, Chanprasert J, Tongsima S, Kusonmano K, Jeamton W, Dulsawat S, Klanchui A, Vorapreeda T, Chumchua V, Khannapho C, Thammarongtham C, Plengvidhya V, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Meechai A, Senachak J, Tanticharoen M - Stand Genomic Sci (2012)

Bottom Line: Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals.The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids.The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

View Article: PubMed Central - PubMed

ABSTRACT
Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A. platensis C1 strain and its annotation. The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids. The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

No MeSH data available.


Related in: MedlinePlus

The phylogenetic tree of 51 cyanobacterial concatenated ribosomal proteins. The main topology is in agreement with earlier inferences of the phylogeny of this taxon with the 16s rRNA based on the GTR+G+I substitution model [7]. The tree is built using the Neighbor-Joining method and 1,000 re-samplings to calculate bootstrap values. A. platensis C1 was clustered together with other strains in the order Oscillatoriales and was clearly separated from related species in the order Nostocales. The conserved, concatenated ribosomal protein phylogenetic tree indicated the monophyly of this Arthrospira genus.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3368399&req=5

f1: The phylogenetic tree of 51 cyanobacterial concatenated ribosomal proteins. The main topology is in agreement with earlier inferences of the phylogeny of this taxon with the 16s rRNA based on the GTR+G+I substitution model [7]. The tree is built using the Neighbor-Joining method and 1,000 re-samplings to calculate bootstrap values. A. platensis C1 was clustered together with other strains in the order Oscillatoriales and was clearly separated from related species in the order Nostocales. The conserved, concatenated ribosomal protein phylogenetic tree indicated the monophyly of this Arthrospira genus.

Mentions: Historically, the classification of the Arthrospira and Spirulina genera [Figure 1] was a subject of controversy. For the commercial strain, Arthrospira or Spirulina was used interchangeably. Both Arthrospira and Spirulina are similar in morphological characters; cylindrical, multicellular, filamentous cyanobacteria with an open, left-handed helical shape [Table 1]. They both belong to the Phylum Cyanobacteria, Order Oscillatoriales and Family Oscillatoriaceae [13]. However, they can be differentiated by the presence of cell septa: Arthrospira possess septa, whereas Spirulina do not [14].


Draft genome sequence of Arthrospira platensis C1 (PCC9438).

Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S, Tabata S, Kaneko T, Chaijaruwanich J, Sangsrakru D, Tangphatsornruang S, Chanprasert J, Tongsima S, Kusonmano K, Jeamton W, Dulsawat S, Klanchui A, Vorapreeda T, Chumchua V, Khannapho C, Thammarongtham C, Plengvidhya V, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Meechai A, Senachak J, Tanticharoen M - Stand Genomic Sci (2012)

The phylogenetic tree of 51 cyanobacterial concatenated ribosomal proteins. The main topology is in agreement with earlier inferences of the phylogeny of this taxon with the 16s rRNA based on the GTR+G+I substitution model [7]. The tree is built using the Neighbor-Joining method and 1,000 re-samplings to calculate bootstrap values. A. platensis C1 was clustered together with other strains in the order Oscillatoriales and was clearly separated from related species in the order Nostocales. The conserved, concatenated ribosomal protein phylogenetic tree indicated the monophyly of this Arthrospira genus.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3368399&req=5

f1: The phylogenetic tree of 51 cyanobacterial concatenated ribosomal proteins. The main topology is in agreement with earlier inferences of the phylogeny of this taxon with the 16s rRNA based on the GTR+G+I substitution model [7]. The tree is built using the Neighbor-Joining method and 1,000 re-samplings to calculate bootstrap values. A. platensis C1 was clustered together with other strains in the order Oscillatoriales and was clearly separated from related species in the order Nostocales. The conserved, concatenated ribosomal protein phylogenetic tree indicated the monophyly of this Arthrospira genus.
Mentions: Historically, the classification of the Arthrospira and Spirulina genera [Figure 1] was a subject of controversy. For the commercial strain, Arthrospira or Spirulina was used interchangeably. Both Arthrospira and Spirulina are similar in morphological characters; cylindrical, multicellular, filamentous cyanobacteria with an open, left-handed helical shape [Table 1]. They both belong to the Phylum Cyanobacteria, Order Oscillatoriales and Family Oscillatoriaceae [13]. However, they can be differentiated by the presence of cell septa: Arthrospira possess septa, whereas Spirulina do not [14].

Bottom Line: Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals.The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids.The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

View Article: PubMed Central - PubMed

ABSTRACT
Arthrospira platensis is a cyanobacterium that is extensively cultivated outdoors on a large commercial scale for consumption as a food for humans and animals. It can be grown in monoculture under highly alkaline conditions, making it attractive for industrial production. Here we describe the complete genome sequence of A. platensis C1 strain and its annotation. The A. platensis C1 genome contains 6,089,210 bp including 6,108 protein-coding genes and 45 RNA genes, and no plasmids. The genome information has been used for further comparative analysis, particularly of metabolic pathways, photosynthetic efficiency and barriers to gene transfer.

No MeSH data available.


Related in: MedlinePlus